Malaria, with 300-500 million clinical cases resulting in 1-3 million fatalities a year, is one of the most deadly tropical diseases. As current antimalarial therapeutics become increasingly ineffective due to parasitic resistance, there exists an urgent need to develop and pursue new therapeutic strategies. Recent genome sequencing and molecular cloning projects have identified several enzymes from Plasmodium (P.) falciparum that may represent novel drug targets, including a family of proteins that are homologous to the mammalian cyclin-dependent kinases (CDKs). CDKs are essential for the control of the mammalian cell cycle and, based on the conservation of the CDKs across species, the plasmodial CDKs are expected to play a crucial role in parasitic growth. Here we present a 3D structural model of Pfmrk, a putative human CDK activating kinase (CAK) homolog in P. falciparum. Notable features of the present structural model include: (1) parameterization of the Mg2+ hexacoordination system using ab initio quantum chemical calculations to accurately represent the ATP-kinase interaction; and (2) comparison between the docking scores and measured binding affinities for a series of oxindole-based Pfmrk inhibitors of known activity. Detailed analysis of inhibitor-Pfmrk binding interactions enabled us to identify specific residues (viz. Met66, Met75, Met91, Met94 and Phe143) within the Pfmrk binding pocket that may play an important role in inhibitor binding affinity and selectivity. The availability of this Pfmrk structural model, together with insights gained from analysis of ligand-receptor interactions, should promote the rational design of potent and selective Pfmrk inhibitors as antimalarial therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2005.06.002DOI Listing

Publication Analysis

Top Keywords

structural model
16
antimalarial therapeutics
8
pfmrk inhibitors
8
pfmrk
6
structural
4
model plasmodium
4
plasmodium cdk
4
cdk pfmrk
4
pfmrk novel
4
novel target
4

Similar Publications

Aim: To ascertain whether Croatian respondents' knowledge on pain aligns with modern pain science, and determine the measurement properties of the Croatian version of the Concept of Pain Inventory for Adults (COPI-Adult).

Methods: A cross-sectional, online survey was used to collect the respondents' sociodemographic, clinical, and COPI-Adult (CRO) data (n = 509). A Pearson correlation coefficient test was used to assess the correlations between sociodemographic, clinical, and COPI-Adult (CRO) data.

View Article and Find Full Text PDF

Directed Electrostatics Strategy Integrated as a Graph Neural Network Approach for Accelerated Cluster Structure Prediction.

J Chem Theory Comput

January 2025

Advanced Artificial Intelligence Theoretical and Computational Chemistry Laboratory, School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India.

We present a directed electrostatics strategy integrated as a graph neural network (DESIGNN) approach for predicting stable nanocluster structures on their potential energy surfaces (PESs). The DESIGNN approach is a graph neural network (GNN)-based model for building structures of large atomic clusters with specific sizes and point-group symmetry. This model assists in the structure building of atomic metal clusters by predicting molecular electrostatic potential (MESP) topography minima on their structural evolution paths.

View Article and Find Full Text PDF

Leveraging Optical Anisotropy of the Morpho Butterfly Wing for Quantitative, Stain-Free, and Contact-Free Assessment of Biological Tissue Microstructures.

Adv Mater

January 2025

Department of Mechanical and Aerospace Engineering, Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.

Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues.

View Article and Find Full Text PDF

Apatinib, a commonly used tyrosine kinase inhibitor in cancer treatment, can cause adverse reactions such as hypertension. Hypertension, in turn, can increase the risk of certain cancers. The coexistence of these diseases makes the use of combination drugs more common in clinical practice, but the potential interactions and regulatory mechanisms in these drug combinations are poorly understood.

View Article and Find Full Text PDF

Structural and Dynamic Assessment of Disease-Causing Mutations for the Carnitine Transporter OCTN2.

Mol Inform

January 2025

Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Muenster, Germany.

Primary carnitine deficiency (PCD) is a rare autosomal recessive genetic disorder caused by missense mutations in the SLC22A5 gene encoding the organic carnitine transporter novel type 2 (OCTN2). This study investigates the structural consequences of PCD-causing mutations, focusing on the N32S variant. Using an alpha-fold model, molecular dynamics simulations reveal altered interactions and dynamics suggesting potential mechanistic changes in carnitine transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!