1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the biologically active metabolite of Vitamin D(3), not only regulates bone and calcium metabolism but also exerts other biological activities, including immunomodulation via the nuclear Vitamin D receptor expressed in antigen-presenting cells and activated T cells. This regulation is mediated through interference with nuclear transcription factors such as NF-AT and NF-kappaB or by direct interaction with Vitamin D responsive elements in the promoter regions of cytokine genes. Dendritic cells (DCs) are primary targets for the immunomodulatory activity of 1,25(OH)(2)D(3), as indicated by inhibited DC differentiation and maturation, leading to down-regulated expression of MHC-II, costimulatory molecules and IL-12. Moreover, 1,25(OH)(2)D(3) enhances IL-10 production and promotes DC apoptosis. Together, these effects of 1,25(OH)(2)D(3) inhibit DC-dependent T cell activation. Immunomodulation by 1,25(OH)(2)D(3) and its analogs in vivo has been demonstrated in different models of autoimmune diseases and transplantation. Moreover, combining analogs with other immunosuppressants leads to synergism in models of autoimmunity and transplantation. The availability of 1,25(OH)(2)D(3) analogs with immunomodulatory activity at non-hypercalcemic doses may allow exploitation of their immunomodulatory effects in a clinical setting of treatment of autoimmune diseases and prevention of allograft rejection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsbmb.2005.06.002 | DOI Listing |
Vet Res Commun
January 2025
Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta N 36 Km 601, Río Cuarto City, 5800, Córdoba, Argentina.
Post-weaning diarrhea (PWD) is a major concern for pig producers, as stress and early weaning increase susceptibility to enteropathogens like enterotoxigenic Escherichia coli (ETEC) and Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium).
View Article and Find Full Text PDFChem Biodivers
January 2025
Yangzhou University, College of Food Science and Engineering, Huayang west road, 225127, Yangzhou, CHINA.
The Lentinus edodes polysaccharide (LEP) was extracted with a new subcritical water extraction (SWE) enhanced with deep eutectic solvent (DES) method and then purified with a DEAE-52 cellulose column and a Sephadex G-100 column. Two purified polysaccharides (LEP1 and LEP2) were obtained and their structure, antioxidant activity, and immunomodulatory activity were analyzed. LEP1 and LEP2 were composed of mannose, glucose, and galactose with a molar ratio of 1:12.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Chair of Microbiology, Jagiellonian University Medical College in Krakow, 18 Czysta Street, Cracow, 31-121, Poland.
Background: Aerobic vaginitis (AV) is a state of abnormal vaginal microbiota, which is associated with increased numbers of aerobic, enteric bacteria and inflammation of the vaginal epithelium. Anti-microbial treatment combined with anti-inflammatory therapy could be useful in the treatment of this condition. It is known that calcitriol, the active form of vitamin D, plays an important role in modulating the immune response in several inflammatory diseases.
View Article and Find Full Text PDFMed
January 2025
Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; Laboratory of Perioperative Stress and Protection, Shanghai 200032, China. Electronic address:
Background: Management of persistent inflammation, immunosuppression, and catabolism syndrome (PICS) after sepsis remains challenging for patients in the intensive care unit, experiencing poor quality of life and death. However, immune-cell signatures in patients with PICS after sepsis remain unclear.
Methods: We determined immune-cell signatures of PICS after sepsis at single-cell resolution.
Nanoscale Adv
January 2025
Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
Extracellular vesicles (EVs) are emerging as viable tools in cancer treatment due to their ability to carry a wide range of theranostic activities. This review summarizes different forms of EVs such as exosomes, microvesicles, apoptotic bodies, and oncosomes. It also sheds the light onto isolation methodologies, characterization techniques and therapeutic applications of all discussed EVs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!