Stem cell transplantation as a therapeutic approach to organ failure.

J Surg Res

Section of Cardiothoracic Surgery, Department of Surgery, Indianapolis, Indiana 46202, USA.

Published: November 2005

Background: Stem cell transplantation is one of the next great frontiers for surgery. Stem cells, which are undifferentiated and self-renewing, have shown the ability to differentiate into cardiomyocytes, as well as many other cell types for potential therapeutic use by surgeons.

Materials And Methods: As a result, stem cells have the potential to undo irreversible cellular damage, something traditional therapies could not cure. However, numerous issues must be resolved to permit safe and effective clinical application of stem cell therapy. These include the interpretation of cellular labeling, the origin of replicating myocytes, the homing mechanism of stem cells, and the differentiation process.

Results: Successful translational research will depend on precise delivery of these cells in real time to the area of interest, e.g., the spinal cord, liver, or heart. Surgeons will be better able to excise and replace/regrow, rather than excise alone. As such, a basic understanding of stem cell biology will benefit the surgeon scientist and clinical surgeon.

Conclusions: The review: 1) discusses myocardial regeneration; 2) defines and categorizes stem cells; 3) presents evidence of stem cell transdifferentiation into cardiomyocytes; and, 4) delineates the therapeutic potential of stem cells in the treatment of ischemic heart disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2005.04.016DOI Listing

Publication Analysis

Top Keywords

stem cell
20
stem cells
20
stem
10
cell transplantation
8
cells
6
cell
5
transplantation therapeutic
4
therapeutic approach
4
approach organ
4
organ failure
4

Similar Publications

Donor-specific antibodies (DSAs) are essential causes of graft rejection in haploidentical hematopoietic stem cell transplantation (haplo-HSCT). DSAs are unavoidable for some patients who have no alternative donor. Effective interventions to reduce DSAs are still needed, and the cost of the current therapies is relatively high.

View Article and Find Full Text PDF

Current Development of Mesenchymal Stem Cell-Derived Extracellular Vesicles.

Cell Transplant

January 2025

Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China.

Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal. They play a critical role in cell therapy due to their powerful immunomodulatory and regenerative effects. Recent studies suggest that one of the key therapeutic mechanisms of MSCs seems to derive from their paracrine product, called extracellular vesicles (EVs).

View Article and Find Full Text PDF

Cell therapy: A beacon of hope in the battle against pulmonary fibrosis.

FASEB J

January 2025

Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.

Pulmonary fibrosis (PF) is a chronic and progressive interstitial lung disease characterized by abnormal activation of myofibroblasts and pathological remodeling of the extracellular matrix, with a poor prognosis and limited treatment options. Lung transplantation is currently the only approach that can extend the life expectancy of patients; however, its applicability is severely restricted due to donor shortages and patient-specific limitations. Therefore, the search for novel therapeutic strategies is imperative.

View Article and Find Full Text PDF

Genomic profiling at a single center cracks the code in inborn errors of immunity.

Intern Emerg Med

January 2025

Unit of Internal Medicine and Clinical Oncology "G. Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro Medical School, Bari, Italy.

Inborn errors of immunity (IEI) entail a diverse group of disorders resulting from hereditary or de novo mutations in single genes, leading to immune dysregulation. This study explores the clinical utility of next-generation sequencing (NGS) techniques in diagnosing monogenic immune defects. Eight patients attending the immunodeficiency clinic and with unclassified antibody deficiency were included in the analysis.

View Article and Find Full Text PDF

Background: Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!