Vascular endothelial growth factor (VEGF) has been shown to display neuroprotective effects on dopaminergic (DA) neurons. Here, we investigated the neurorescue effects of VEGF on 6-hydroxydopamine (6-OHDA)-treated DA neurons in vitro and in vivo. Initially, we examined in vitro whether 1, 10, or 100 ng/ml of VEGF administration at 2 or 4 h after 6-OHDA treatment rescued DA neurons derived from E14 murine ventral mesencephalon. The earlier treatment of VEGF suppressed 6-OHDA-induced loss of DA neurons more than the delayed treatment. Next, we examined whether the continuous infusion of VEGF had neurorescue effects in a rat model of Parkinson's disease. We established a human VEGF secreting cell line (BHK-VEGF) and encapsulated the cells into hollow fibers. The encapsulated cells were unilaterally transplanted into the striatum of adult rats at 1 or 2 weeks after 6-OHDA lesions, and animals subsequently underwent behavioral and immunohistochemical evaluations. Compared to lesioned rats that received BHK-Control capsules, lesioned rats transplanted with BHK-VEGF capsules showed a significant reduction in the number of amphetamine-induced rotations, a significant preservation of TH-positive neurons in the substantia nigra pars compacta, and a remarkable glial proliferation in the striatum, with the earlier transplantation exerting much more benefits than the delayed transplantation. Parallel studies revealed that the observed in vitro and in vivo neurorescue effects were likely mediated by VEGF's angiogenic and glial proliferative effects, as well as its direct effects on the neurons. Our results suggest that VEGF is a highly potent neurorescue molecule for Parkinson's disease therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2005.05.027 | DOI Listing |
Clin Exp Pharmacol Physiol
September 2023
Institut supérieur de Biotechnologie de Monastir, Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressources, Université de Monastir, Monastir, Tunisia.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra, for which no disease-modifying treatments are available yet. Thus, developing new neuroprotective drugs with the potential to delay or stop the natural course of the disease is necessary. The aim of the present study was to evaluate the neuroprotective effects of a newly synthesized 3-aminohydantoin derivative named 3-amino-5-benzylimidazolidine-2,4-dione (PHAH).
View Article and Find Full Text PDFMolecules
April 2022
Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
Two analogues of tolcapone where the nitrocatechol group has been replaced by a 1-hydroxy-2(1)-pyridinone have been designed and synthesised. These compounds are expected to have a dual mode of action both beneficial against Parkinson's disease: they are designed to be inhibitors of catechol -methyl transferase, which contribute to the reduction of dopamine in the brain, and to protect neurons against oxidative damage. To assess whether these compounds are worthy of biological assessment to demonstrate these effects, measurement of their pa and stability constants for Fe(III), in silico modelling of their potential to inhibit COMT and blood-brain barrier scoring were performed.
View Article and Find Full Text PDFInt J Med Mushrooms
April 2022
Institute of Biological Sciences, Faculty of Science, University Malaya, 50603 Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
Neurological diseases are increasingly recognized as a health burden worldwide, mainly affecting the elderly population. Sanguinoderma rugosum (=Amauroderma rugosum) is a wild medicinal mushroom traditionally used to alleviate inflammation and prevent seizures. The present study aimed to investigate the neuroprotective and neurorescue effects as well as the possible mechanisms of S.
View Article and Find Full Text PDFACS Chem Neurosci
April 2022
Department of Biochemistry, King George's Medical University (KGMU), Lucknow 226003, Uttar Pradesh, India.
Parkinson's disease (PD) is the second most common devastating neurodegenerative disorder. Presently used therapies for PD have severe side effects and are limited to only temporary improvement. Therefore, a new therapeutic approach to treat PD urgently needs to be developed.
View Article and Find Full Text PDFMolecules
August 2021
Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand.
Parkinson's disease (PD) is a currently incurable neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta and α-synuclein aggregation. Accumulated evidence indicates that the saponins, especially from ginseng, have neuroprotective effects against neurodegenerative disorders. Interestingly, saponin can also be found in marine organisms such as the sea cucumber, but little is known about its effect in neurodegenerative disease, including PD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!