Cholapod anion receptors can achieve high affinities while maintaining compatibility with nonpolar media. Previously they have been shown to transport anions across cell and vesicle membranes. In the present work, the scope of the architecture is expanded and structure-selectivity relationships are investigated. Eight new receptors have been synthesized, with up to six H-bond donor centers. Using Cram's extraction method, these compounds plus five known examples have been tested for binding to seven monovalent anions (tetraethylammonium salts, wet chloroform as solvent). Association constants in excess of 10(10) M(-1) have been measured for several pairings. Selectivities vary with receptor geometry, as expected. More remarkably, they also depend on receptor strength: more powerful receptors show a wider range of binding free energies, and therefore a greater spread of Ka(X-)/Ka(Y-). This "affinity-selectivity" effect can be derived from empirical relationships for H-bond strengths, and could prove widely operative in supramolecular chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0524144DOI Listing

Publication Analysis

Top Keywords

cholapod anion
8
anion receptors
8
substrate discrimination
4
discrimination cholapod
4
receptors
4
receptors geometric
4
geometric effects
4
effects "affinity-selectivity
4
"affinity-selectivity principle"
4
principle" cholapod
4

Similar Publications

The natural product Valinomycin is a well-known transmembrane cation carrier. Despite being uncharged, this molecule can extract potassium ions from water without counterions and ferry them through a membrane interior. Because it only transports positive ions, it is electrogenic, mediating a flow of charge across the membrane.

View Article and Find Full Text PDF

Steroid-based anion receptors and transporters.

Chem Soc Rev

October 2010

School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.

Anion binding and transport are important goals of supramolecular chemistry, especially in light of the potential for biological activity. Success depends on scaffolds which can preorganise polar functionality for anion recognition, and can maintain the right physical properties (e.g.

View Article and Find Full Text PDF

Cyclosteroidal "cholaphane" anion transporters show increased activities compared to acyclic "cholapod" analogues.

View Article and Find Full Text PDF

Chloride transport by a series of steroid-based "cholapod" receptors/carriers was studied in vesicles. The principal method involved preincorporation of the cholapods in the vesicle membranes, and the use of lucigenin fluorescence quenching to detect inward-transported Cl-. The results showed a partial correlation between anion affinity and transport activity, in that changes at the steroidal 7 and 12 positions affected both properties in concert.

View Article and Find Full Text PDF

Cholapod anion receptors can achieve high affinities while maintaining compatibility with nonpolar media. Previously they have been shown to transport anions across cell and vesicle membranes. In the present work, the scope of the architecture is expanded and structure-selectivity relationships are investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!