Five hundred protein kinases phosphorylate 10 000 proteins in human cells. Frequently, more than one site in a protein is phosphorylated, and often by more than one protein kinase. The mechanistic basis underlying the overlapping specificity of the phospho-proteome is not well understood. We are interested in understanding why ERK2, a proline-directed protein kinase, phosphorylates only a fraction of the (S/T-P) sites found in the surface loops of proteins, at an appreciable rate. To address this fundamental question, we utilized a well-established protein substrate EtsDelta138, which comprises a globular ERK2-recognition domain (pnt domain) and an unstructured peptide-like N-terminal tail. This tail contains T38, the sole ERK2 phosphorylation site. We mutated the TP motif, which is recognized by the active site and found that mutagenesis of the T-38/P-39 motif to TD, TR, TA, TG, and TV has no effect on the stability of the ternary complex but does decrease kcat. We also investigated the effect of perturbing the binding between ERK2 and the pnt domain, which occurs outside the active site, to find that mutation of the pnt domain (F120A) leads to a 10-fold decrease in binding but the kcat remains the same. The data support a mechanism of proximity-mediated catalysis, where the docking of the pnt domain, outside the active site, increases the effective concentration of the TP motif near the active site. The data are consistent with the notion that the interaction between ERK2 and the pnt domain provides uniform binding energy and stabilizes each enzyme intermediate and transition state to an equal extent. While other steps on the reaction pathway contribute towards the specificity of the ERK2 reaction, a docking interaction provides the initial basis for substrate recognition. Those residues within the docked complex, which have the ability to access the active site with an appropriate geometry, can be phosphorylated at an efficient rate if followed by a proline or small hydrophobic amino acid.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085985 | PMC |
http://dx.doi.org/10.1021/ja052915p | DOI Listing |
Sci Rep
January 2025
Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden.
ITK-SYK and TEL-SYK (also known as ETV6-SYK) are human tumor-causing chimeric proteins containing the kinase region of SYK, and the membrane-targeting, N-terminal, PH-TH domain-doublet of ITK or the dimerizing SAM-PNT domain of TEL, respectively. ITK-SYK causes peripheral T cell lymphoma, while TEL-SYK was reported in myelodysplastic syndrome. BTK is a kinase highly related to ITK and to further delineate the role of the N-terminus, we generated the corresponding fusion-kinase BTK-SYK.
View Article and Find Full Text PDFPharmaceuticals (Basel)
October 2024
Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil.
The primary treatment for chronic myeloid leukemia (CML) involves first- and second-generation tyrosine kinase inhibitors (TKIs), such as imatinib, nilotinib, bosutinib, and dasatinib. However, these medications are ineffective against mutations in the kinase domain of the ABL1 protein, particularly in the protein with the T315I mutation. To address this, ponatinib (PNT), a third-generation inhibitor, was developed.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
mTOR plays a crucial role in cell growth by controlling ribosome biogenesis, metabolism, autophagy, mRNA translation, and cytoskeleton organization. It is a serine/threonine kinase that is part of two distinct extensively described protein complexes, mTORC1 and mTORC2. We have identified a rapamycin-resistant mTOR complex, called mTORC3, which is different from the canonical mTORC1 and mTORC2 complexes in that it does not contain the Raptor, Rictor, or mLST8 mTORC1/2 components.
View Article and Find Full Text PDFSensors (Basel)
May 2024
School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.
Global Navigation Satellite Systems (GNSS) offer comprehensive position, navigation, and timing (PNT) estimates worldwide. Given the growing demand for reliable location awareness in both indoor and outdoor contexts, the advent of fifth-generation mobile communication technology (5G) has enabled expansive coverage and precise positioning services. However, the power received by the signal of interest (SOI) at terminals is notably low.
View Article and Find Full Text PDFbioRxiv
June 2024
Tufts Graduate School of Biomedical Sciences, Program in Genetics, Boston, MA, United States.
KDM2B is a JmjC domain lysine demethylase, which promotes cell immortalization, stem cell self-renewal and tumorigenesis. Here we employed a multi-omics strategy to address its role in ribosome biogenesis and mRNA translation. These processes are required to sustain cell proliferation, an important cancer hallmark.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!