Graph kernels for molecular structure-activity relationship analysis with support vector machines.

J Chem Inf Model

Ecole des Mines de Paris, 35 rue Saint Honoré, 77305 Fontainebleau, France.

Published: May 2006

The support vector machine algorithm together with graph kernel functions has recently been introduced to model structure-activity relationships (SAR) of molecules from their 2D structure, without the need for explicit molecular descriptor computation. We propose two extensions to this approach with the double goal to reduce the computational burden associated with the model and to enhance its predictive accuracy: description of the molecules by a Morgan index process and definition of a second-order Markov model for random walks on 2D structures. Experiments on two mutagenicity data sets validate the proposed extensions, making this approach a possible complementary alternative to other modeling strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci050039tDOI Listing

Publication Analysis

Top Keywords

support vector
8
graph kernels
4
kernels molecular
4
molecular structure-activity
4
structure-activity relationship
4
relationship analysis
4
analysis support
4
vector machines
4
machines support
4
vector machine
4

Similar Publications

Objective: This study aims to develop and validate a machine learning model for identifying individuals within the nursing population experiencing severe subjective cognitive decline (SCD) during the menopause transition, along with their associated factors.

Methods: A secondary analysis was performed using cross-sectional data from 1,264 nurses undergoing the menopause transition. The data set was randomly split into training (75%) and validation sets (25%), with the Bortua algorithm employed for feature selection.

View Article and Find Full Text PDF

Placebo effect represents a serious confounder for the assessment of treatment effect to the extent that it has become increasingly difficult to develop antidepressant medications appropriate for outperforming placebo. Treatment effect in randomized, placebo-controlled trials, is usually estimated by the mean baseline adjusted difference of treatment response in active and placebo arms and is function of treatment-specific and non-specific effects. The non-specific treatment effect varies subject by subject conditional to the individual propensity to respond to placebo.

View Article and Find Full Text PDF

Background/purpose: Oral squamous cell carcinoma (OSCC) is notorious for its low survival rates, due to the advanced stage at which it is commonly diagnosed. To enhance early detection and improve prognostic assessments, our study harnesses the power of machine learning (ML) to dissect and interpret complex patterns within mRNA-sequencing (RNA-seq) data and clinical-histopathological features.

Materials And Methods: 206 retrospective Vietnamese OSCC formalin-fixed paraffin-embedded (FFPE) tumor samples, of which 101 were subjected to RNA-seq for classification based on gene expression.

View Article and Find Full Text PDF

Exploring Mortality and Prognostic Factors of Heart Failure with In-Hospital and Emergency Patients by Electronic Medical Records: A Machine Learning Approach.

Risk Manag Healthc Policy

January 2025

Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 235603, Taiwan.

Purpose: As HF progresses into advanced HF, patients experience a poor quality of life, distressing symptoms, intensive care use, social distress, and eventual hospital death. We aimed to investigate the relationship between morality and potential prognostic factors among in-patient and emergency patients with HF.

Patients And Methods: A case series study: Data are collected from in-hospital and emergency care patients from 2014 to 2021, including their international classification of disease at admission, and laboratory data such as blood count, liver and renal functions, lipid profile, and other biochemistry from the hospital's electrical medical records.

View Article and Find Full Text PDF

This study investigated the impacts of hot water treatment (HWT) at 50°C or 25°C for 5 min and high-temperature ethylene (HTE) exposure at varying temperatures (20°C, 30°C, or 35°C) and durations (24, 48, or 72 h) on the postharvest quality and antioxidant properties of mature green tomatoes (MG). Color changes, physicochemical characteristics, antioxidant compounds, and overall antioxidant ability were assessed. HWT increased β-carotene levels and oxygen radical absorbance capacity (ORAC) while preserving color metrics, despite later HTE exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!