Astronauts and cosmonauts are exposed to a wide variety of different hazards while in space that include radiation, which presents one of the most critical barriers to long-term missions. A major deleterious effect directly associated with ionizing radiation is the production of reactive oxygen species (ROS) such as peroxides and hydroxyl radicals. The free radicals generated by ultraviolet (UV) or ionizing radiation can attack cellular lipids, proteins and DNA. Endogenous free radical scavengers such as glutathione and the polyamines (e.g, spermidine and spermine) can inhibit the action of ROS. In particular, heme oxygenase-1 (HO-1), the enzyme involved in heme protein metabolism, can provide antioxidant protection through the production of the antioxidant bilirubin. Furthermore, polyamines have been shown to indirectly increase HO-1 content and antioxidant protection. The beta2-adrenoceptor agonist clenbuterol has been shown to stimulate polyamine synthesis and by extension, might provide a margin of antioxidant protection through increasing HO-1 content. However, it is unclear whether the polyamines are acting as a tertiary messengers for antioxidant protection in the be beta2-adrenoceptor signal transduction pathway. The purpose of this study was to study the role of the polyamine pathway in attenuating free radical-induced damage.

Download full-text PDF

Source

Publication Analysis

Top Keywords

antioxidant protection
16
ionizing radiation
8
ho-1 content
8
protection beta2-adrenoceptor
8
antioxidant
5
polyamines
4
polyamines protect
4
protect radiation-induced
4
radiation-induced oxidative
4
oxidative stress
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!