Methanogens growing on C-1 substrates synthesize 2-carbon acetyl groups in the form of acetyl-CoA for carbon assimilation using the multienzyme complex acetyl-CoA decarbonylase/synthase (ACDS) which contains five different subunits encoded within an operon. In species growing on acetate ACDS also functions to cleave the acetate C-C bond for energy production by methanogenesis. A number of species of Methanosarcina that are capable of growth on either C-1 compounds or acetate contain two separate ACDS operons, and questions have been raised about whether or not these operons play separate roles in acetate synthesis and cleavage. Methanosarcina thermophila genomic DNA was analyzed for the presence of two ACDS operons by PCR amplifications with different primer pairs, restriction enzyme analyses, DNA sequencing and Southern blot analyses. A single ACDS operon was identified and characterized, with no evidence for more than one. MALDI mass spectrometric analyses were carried out on ACDS preparations from methanol- and acetate-grown cells. Peptide fragmentation patterns showed that the same ACDS subunits were present regardless of growth conditions. The evidence indicates that a single form of ACDS is used both for acetate cleavage during growth on acetate and for acetate synthesis during growth on C-1 substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-005-0006-3DOI Listing

Publication Analysis

Top Keywords

form acetyl-coa
8
acetyl-coa decarbonylase/synthase
8
multienzyme complex
8
synthesis cleavage
8
methanosarcina thermophila
8
c-1 substrates
8
acds
8
acds subunits
8
growth c-1
8
acds operons
8

Similar Publications

Related to the inactive form of nitrile hydratase, NHase, that contains Fe(NO) within tripeptide NS binding environment, the NO transfer reactivity of (bis-mercaptoethane diazacycloheptane)Fe(NO) and (bis-mercaptoethane diazadimethylethane)Fe(NO) is compared to Co(NO) analogs. Acceptors of NO include cobalt octaethylporphyrin and the [(NS)M] dimeric precursors in the synthesis of the Fe(NO) and Co(NO) biomimetics. Qualitative rates are augmented by a definitive kinetic study finding that rates of NO transfer from (NS)M(NO) to [(NS)M'] are dependent on M and M' as well as the hydrocarbon N to N and N to S linkers.

View Article and Find Full Text PDF

Objectives: To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX.

Methods: The brown cocktail method was employed to induce 3T3-L1 MBX cells to differentiate into beige adipocytes. The impact of pachymic acid on the viability of 3T3-L1 MBX preadipocytes was evaluated using the CCK-8 assay.

View Article and Find Full Text PDF

Effects of Prolactin Inhibition on Lipid Metabolism in Goats.

Animals (Basel)

November 2024

College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China.

Prolactin (PRL) has recently been found to play a role in lipid metabolism in addition to its traditional roles in lactation and reproduction. However, the effects of PRL on lipid metabolism in liver and adipose tissues are unclear. Therefore, we aimed to study the role of PRL on lipid metabolism in goats.

View Article and Find Full Text PDF

Acetyl-CoA is a key metabolic intermediate and the product of various natural and synthetic one-carbon (C1) assimilation pathways. While an efficient conversion of acetyl-CoA into other central metabolites, such as pyruvate, is imperative for high biomass yields, available aerobic pathways typically release previously fixed carbon in the form of CO. To overcome this loss of carbon, we develop a new-to-nature pathway, the Lcm module, in this study.

View Article and Find Full Text PDF

Insights into the methodology of acetyl-CoA carboxylase inhibition.

Methods Enzymol

November 2024

Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States. Electronic address:

Acetyl-CoA carboxylase catalyzes the first committed and regulated step in fatty acid synthesis in all animals, plants and bacteria. In most Gram-positive and Gram-negative bacteria, the enzyme is composed of three proteins: biotin carboxylase, biotin carboxyl carrier protein and carboxyltransferase. The reaction consists of two half-reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!