CGX-1051 is a synthetic version of a peptide originally isolated from the venom of cone snails. In the present studies, we tested the potential cardioprotective effect of CGX-1051 in a rat and dog model of myocardial ischemia/reperfusion. CGX-1051 was administered 5 minutes before reperfusion as intravenous bolus doses of 30, 100, and 300 microg/kg. Infarct size (IS) is reported as IS/area at risk (AAR). In the rat, the vehicle control group had an IS/AAR of 59.8+/-2.1%. Postischemic administration of CGX-1051 at doses of 30, 100, and 300 microg/kg resulted in an IS/AAR of 52.6+/-4.2%, 34.6+/-5.6% (P<0.05), and 40.8+/-5.2% (P<0.05), respectively. In the dog, the vehicle control group had an IS/AAR of 18.8+/-1.7%. Postischemic administration of CGX-1051 at doses of 30, 100, and 300 microg/kg resulted in an IS/AAR of 16.9+/-2.5%, 8.4+/-2.9% (P<0.05) and 9.9+/-2.4% (P<0.05), respectively. These results demonstrate that administration of CGX-1051 at a clinically relevant time point results in a dose-dependent reduction in IS in both rats and dogs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.fjc.0000167015.84715.27 | DOI Listing |
Int J Mol Sci
January 2025
Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China.
Stroke is the leading cause of death and disability worldwide, with ischemic stroke accounting for the majority of these. HBA is the active ingredient in and has potential therapeutic effects on central nervous system diseases. In this study, the cell model of cerebral ischemia was replicated by the culture method of oxygen-glucose deprivation/reoxygenation, and the rat model of vascular dementia was established by the two-vessel occlusion method.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China. Electronic address:
Background: Mounting data indicates that extracellular vesicles (EVs) have the potential to improve the injury after a stroke. Pyroptosis is a recently identified kind of programmed cell death that initiates an inflammatory reaction. We aimed to ascertain the therapeutic implications and possible molecular processes of EVs obtained from adipose-derived stem cells (ADSCs) in inhibiting pyroptosis in ischemic stroke.
View Article and Find Full Text PDFJ Vis Exp
November 2024
Department of Surgery, Division of Anatomy, University of Toronto; Institute of Medical Science, University of Toronto; Institute of Biomedical Engineering, University of Toronto; Donnelly Centre for Cellular and Biomedical Research, University of Toronto;
Ectopic expression of neurogenic factors in vivo has emerged as a promising approach for replacing lost neurons in disease models. The use of neural basic helix-loop-helix (bHLH) transcription factors via non-propagating virus-like particle systems, including retrovirus, lentivirus, and adeno-associated virus (AAV), has been extensively reported. For in vivo experiments, AAVs are increasingly used due to their low pathogenicity and potential for translatability.
View Article and Find Full Text PDFExp Neurol
November 2024
Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China. Electronic address:
This study was to explore whether docosahexaenoic acid (DHA) protects against ischemic stroke in diabetic mice and its mechanisms. DHA was administered to mice and its effects on stroke outcomes in type 1 diabetes mellitus were assessed 24 h and 3 days post-reperfusion using RNA sequencing, flow cytometry, multiplex immunoassays, and western-blotting analysis. In diabetic mice, DHA administration post-ischemic stroke significantly reduced cerebral infarct size, brain edema, and neurological impairments.
View Article and Find Full Text PDFMicrovasc Res
March 2025
Department of Anesthesia, Royal Victoria Hospital, McGill University Health Centre Glen Site, Montreal, QC, Canada.
Introduction: l-glutamine has been shown to have cardioprotective effects in models of ischemia-reperfusion injury. Its potential cardioprotective effects when given before and during early reperfusion, however, have not been studied.
Methods: This study hypothesized that l-glutamine administered before and after myocardial ischemia provides better cardioprotection than when administered after ischemia only.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!