Purpose: To elucidate the role of activated microglia in the photoreceptor apoptosis of rd mice by identifying sequential events and factors associated with microglial activation, migration, and cytotoxicity during retinal degeneration.

Methods: Photoreceptor apoptosis in rd mice at postnatal days (P)8, 10, 12, 14, 16, and 18 was detected by terminal dUTP transferase nick end labeling (TUNEL). Retinal microglia were identified by CD11b antibody. Expression of chemokine mRNA, including monocyte chemoattractant protein (MCP)-1, MCP-3, macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, regulated on activation normal T-cell expressed and secreted (RANTES), interferon-gamma-inducible 10-kDa protein (IP-10), and fractalkine in the retina were examined by reverse transcription-polymerase chain reaction (RT-PCR) assay. Production of tumor necrosis factor (TNF)-alpha in the dystrophic retina was studied by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry analysis. Microglial expression of TNF-alpha was determined by double immunolabeling.

Results: Whereas photoreceptor apoptosis in the rd mice started at P10 and reached a peak at P16, activation and migration of microglial cells were observed at P10 and peaked at P14. The expression of MCP-1, MCP-3, MIP-1alpha, MIP-1beta, and RANTES transcripts were noted at P8 and reached a peak at P12. Production of TNF-alpha was noted in the outer nuclear layer (ONL) of the rd mice at P8 and reached a peak at P12. At the peak of microglial activity, TNF-alpha was predominantly expressed in the activated microglial cells in the ONL.

Conclusions: Activation of microglia, as well as expression of their signaling molecules (chemokines) and microglia-derived toxic factor (TNF-alpha), coincides with or precedes the occurrence of photoreceptor apoptosis, suggesting activated microglia play a major role in retinal degeneration in rd mice. The chemokines MCP-1, MCP-3, MIP-1alpha, MIP-1beta, and RANTES are involved in activation and recruitment of the microglia to the degenerating photoreceptor cell layer. TNF-alpha, produced by the activated microglia, may accentuate the photoreceptor cell death.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.05-0118DOI Listing

Publication Analysis

Top Keywords

photoreceptor apoptosis
16
activation migration
12
activated microglia
12
apoptosis mice
12
mcp-1 mcp-3
12
mip-1alpha mip-1beta
12
reached peak
12
sequential events
8
events factors
8
factors associated
8

Similar Publications

Age- and Sex-Specific Regulation of Serine Racemase in the Retina of an Alzheimer's Disease Mouse.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Optometry, and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Purpose: Changes associated with Alzheimer's disease (AD) may have measurable effects on the retina, which may facilitate early detection due to the eye's accessibility. Retinal pathology and the regulation of serine racemase (SR) were investigated in the retinas of APP(SW)/PS1(∆E9) mice.

Methods: SR in the retinas and the content of D-serine in the aqueous humor were analyzed.

View Article and Find Full Text PDF

VEGF is not only the most potent angiogenic factor, but also an important neurotrophic factor. In this study, vitreous expression of six neurotrophic factors were examined in proliferative diabetic retinopathy (PDR) patients with prior anti-VEGF therapy (n = 48) or without anti-VEGF treatment (n = 41) via ELISA. Potential source, variation and impact of these factors were further investigated in a mouse model of oxygen-induced retinopathy (OIR), as well as primary Müller cells and 661W photoreceptor cell line under hypoxic condition.

View Article and Find Full Text PDF

Quercetin Alleviates All--Retinal-Induced Photoreceptor Apoptosis and Retinal Degeneration by Inhibiting the ER Stress-Related PERK Signaling.

Int J Mol Sci

December 2024

Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.

All--retinal (atRAL)-induced photoreceptor atrophy and retinal degeneration are hallmark features of dry age-related macular degeneration (AMD) and Stargardt disease type 1 (STGD1). The toxicity of atRAL is closely related to the generation of reactive oxygen species (ROS). Quercetin, a natural product, is known for its potent antioxidant properties; however, its effects in mitigating atRAL-mediated retinal damage remains unclear.

View Article and Find Full Text PDF

Retinal degenerative diseases lead to irreversible vision loss due to photoreceptor cell death, driven by complex genetic and environmental factors. Ceramide, a sphingolipid metabolite, emerges as a critical mediator in the apoptotic cascade associated with retinal degeneration. Our previous work demonstrated L-Cycloserine's ability to protect photoreceptor-derived cells from oxidative stress by inhibiting the de novo ceramide pathway and thus prompting further investigation on its effect in the in vivo retina.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) within the retina play a key role in maintaining function and cell survival. However, excessive ROS can lead to oxidative stress, inducing dysregulation of metabolic and inflammatory pathways. The zebrafish models choroideremia (CHM), an X-linked chorioretinal dystrophy, which predominantly affects the photoreceptors, retinal pigment epithelium (RPE), and choroid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!