Purpose: The early response and survival of oligodendrocytes after axonal stroke and their potential contribution to neuronal survival in vivo have not been adequately addressed. The purpose of this study was to investigate the changes occurring in the retina and optic nerve (ON) in anterior ischemic optic neuropathy (AION), using a c-fos transgenic mouse model.
Methods: A new mouse model of AION (rodent AION) was developed to evaluate the in vivo stress response of oligodendrocytes and retinal ganglion cells (RGCs) in a transgenic mouse strain, using the immediate early stress-response gene c-fos, RT-QPCR technology, immunohistochemistry, and electron microscopy. Confocal microscopy was used with cell-specific antibodies to characterize the timing of cells responding to rAION. The TUNEL assay detected cells undergoing apoptosis. Ultrastructural changes were analyzed by electron microscopy.
Results: In rAION, oligodendrocytes rapidly respond in vivo to ischemic ON damage, with c-fos activation as an early detectable event. Early evidence of progressive oligodendrocyte stress, is followed by demyelination, wallerian degeneration of the ON, and oligodendrocyte and RGC death far from the primary lesion.
Conclusions: After rAION induction oligodendrocytes, as well as RGCs, undergo progressive stress, with dysfunction and apoptosis. The findings lead to a proposal that progressive retrograde oligodendrocyte stress, away from the primary lesion, is an important factor after ischemic optic neuropathy. Postinduction demyelination must be addressed for effective neuroprotection of ischemic and hypoxic white matter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.04-0547 | DOI Listing |
Int J Mol Sci
December 2024
Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph's Hospital and Medical Center (SJHMC), Phoenix, AZ 85013, USA.
Traumatic optic neuropathy (TON) has been regarded a vision-threatening condition caused by either ocular or blunt/penetrating head trauma, which is characterized by direct or indirect TON. Injury happens during sports, vehicle accidents and mainly in military war and combat exposure. Earlier, we have demonstrated that remote ischemic post-conditioning (RIC) therapy is protective in TON, and here we report that AMPKα1 activation is crucial.
View Article and Find Full Text PDFLife (Basel)
December 2024
Department of Ophthalmology, Unicaen, University Hospital of Caen, 14033 Caen, France.
Neuro-ophthalmological changes have been reported after prolonged exposure to microgravity; however, the pathophysiology remains unclear. Furthermore, several countermeasures have been suggested to counteract the side effects of microgravity. The objectives of the present study were twofold: (1) to assess the neuro-ophthalmological impact of 60 days of head-down bed rest (HDBR) and (2) to determine the potential effects of an antioxidant cocktail.
View Article and Find Full Text PDFAMPylation is a post-translational modification involving the transfer of adenosine monophosphate (AMP) from adenosine triphosphate (ATP) to target proteins, serving as a critical regulatory mechanism in cellular functions. This study aimed to expand the phenotypic spectrum associated with mutations in the FICD gene, which encodes an adenyltransferase enzyme involved in both AMPylation and deAMPylation. A clinical evaluation was conducted on a patient presenting with a complex clinical profile.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Department of Medicine and Surgery, University of Enna "Kore", Piazza dell'Università, 94100 Enna, Italy.
/: Optic neuropathies are a category of illnesses that ultimately cause damage to the optic nerve, leading to vision impairment and possible blindness. Disorders such as dominant optic atrophy (DOA), Leber hereditary optic neuropathy (LHON), and glaucoma demonstrate intricate genetic foundations and varied phenotypic manifestations. This narrative review study seeks to consolidate existing knowledge on the genetic and molecular mechanisms underlying ocular neuropathies, examine genotype-phenotype correlations, and assess novel therapeutic options to improve diagnostic and treatment methodologies.
View Article and Find Full Text PDFBrain Sci
November 2024
Department of Neurological Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA.
Background: Fibrous dysplasia (FD) is often difficult for skull base surgeons to address. FD arises due to the abnormal proliferation of fibroblasts, ultimately resulting in immature osseous tissue replacing normal cancellous bone. When the skull base is involved, it can result in cranial nerve compression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!