Analysis of leaf proteome after UV-B irradiation in maize lines differing in sensitivity.

Mol Cell Proteomics

Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.

Published: November 2005

AI Article Synopsis

  • UV-B radiation affects plant morphology and physiology, but the mechanisms are not fully understood.
  • The study used DIGE 2D gels and mass spectrometry to analyze maize leaves' protein responses to UV-B, particularly in a line deficient in flavonoid sunscreens.
  • Findings showed a strong correlation between mRNA levels and protein expression in response to UV-B; certain proteins, like pyruvate, phosphate dikinase, were regulated by UV-B exposure, suggesting potential genetic traits for UV-B tolerance in high-altitude maize varieties.

Article Abstract

UV-B radiation causes diverse morphological and physiological responses in plants, but the underlying mechanisms governing these integrated responses are unknown. In this study, we systematically surveyed responses of maize leaves to UV-B radiation using DIGE 2D gels and identified selected proteins by mass spectrometry and immunodetection analysis. To identify changes in protein accumulation in response to UV-B radiation, a line (b, pl W23) deficient in flavonoid sunscreen compounds and hence similar to commercial corn was used. In addition, its proteome in natural UV-B conditions was compared with that of two maize landraces from high altitudes (Cacahuacintle and Confite Puneño) that have improved UV-B tolerance. Protein patterns in adult maize leaves (Zea mays) were documented after growth for 21 days in sunlight depleted of UV-B radiation or growth in sunlight including an 8-h UV-B supplementation during 1 day in the field. We found that there is a very high correlation between previously documented mRNA accumulation assessed by microarray hybridization and quantitative real time reverse transcription-PCR and protein expression after UV-B irradiation in leaves of W23. Multiple isoforms were confirmed for some proteins; at least one protein, pyruvate, phosphate dikinase, is regulated post-translationally by phosphorylation by UV-B exposure. Proteins differentially regulated by UV-B radiation in W23 with higher levels under similar UV-B conditions in high altitude plants were also identified. These could be genetically fixed traits conferring UV-B tolerance and offer clues to specific adaptations to living in high ambient UV-B conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1074/mcp.M500173-MCP200DOI Listing

Publication Analysis

Top Keywords

uv-b radiation
20
uv-b
14
uv-b conditions
12
uv-b irradiation
8
maize leaves
8
radiation w23
8
uv-b tolerance
8
radiation
5
analysis leaf
4
leaf proteome
4

Similar Publications

Volatile compounds have a deep influence on the quality and application of the medicinal herb ; however, little is known about the effect of UV-B radiation on volatile metabolites. We herein investigated the effects of UV-B exposure on the volatile compounds and transcriptome of to assess the potential for improving its quality and medicinal characteristics. Out of 733 volatiles obtained, a total of 133 differentially expressed metabolites (DEMs) were identified by metabolome analysis.

View Article and Find Full Text PDF

Photoprotection and antioxidant activity of eumelanin from Streptomyces lasalocidi NTB 42 and its photoprotective effects on Schizosaccharomyces pombe ARC039.

J Photochem Photobiol B

December 2024

Microbiology Study Program, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Jl. Raya Dramaga, Bogor 16680, West Java, Indonesia. Electronic address:

This study evaluated the photoprotective and antioxidant properties of eumelanin derived from Streptomyces lasalocidi NTB 42 (eumelanin NTB 42). This study also investigated the cellular-level photoprotective effects of eumelanin using Schizosaccharomyces pombe ARC039 as a model organism and its ability to enhance the Sun Protection Factor (SPF) of commercial sunscreens. The thermal and light stability and total phenolic and flavonoid contents were analyzed.

View Article and Find Full Text PDF

is widely known for its role as an arthropod biocontrol agent and plant bioinoculant. By using mass-production industrial methods, it is possible to produce large amounts of fungal single-celled propagules (including blastospores) to be applied in the field. However, in the environment, the solar ultraviolet components (particularly UV-B) can harm the fungus, negatively impacting its pathogenicity toward the arthropod pest.

View Article and Find Full Text PDF

Identification of GiOMT gene family in Glycyrrhiza inflata bat and expression analysis under UV-B stresses.

BMC Genomics

December 2024

State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou, 730070, China.

Background: O-Methyltransferase (OMTs) is a class of conserved multifunctional enzymes that play important roles in plant developmental regulation, hormone signaling, secondary metabolite synthesis and abiotic stress response. The GiOMT gene family has been identified and analyzed in species such as citrus, alfalfa, Populus and grape, but has not been reported in Glycyrrhiza inflata Bat.

Results: In this study, we systematically identified and analyzed the GiOMT gene family of G.

View Article and Find Full Text PDF

A mycoviral infection drives virulence and ecological fitness of the entomopathogenic fungus Beauveria bassiana.

J Invertebr Pathol

December 2024

Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus Universitario Rabanales 14071, Cordoba, Spain. Electronic address:

Entomopathogenic ascomycetes are important natural regulators of insect pest populations and an increasingly adopted microbial control option. Fungal virulence in entomopathogenic ascomycetes can be modified by mycoviruses, viruses that infect fungi, whereas the possible role of these viruses on the physical and biochemical properties of the virus-containing fungal strains and on their ecological fitness has remained largely unexplored. Here, utilizing a Beauveria bassiana strain naturally infected with two mycoviruses, Beauveria bassiana partitivirus 2 (BbPV-2) and Beauveria bassiana polymycovirus 1 (BbPmV-1), we found that the mycovirus-containing strain is hypervirulent towards the experimental insect Galleria mellonella and shows major physical and biochemical changes in spore size, isoelectric point, and Pr1 activity, but even more impactful, the mycoviral infection confers a significant environmental- abiotic and biotic stress tolerance to the fungus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!