The signal recognition particle (SRP) from Escherichia coli consists of 4.5S RNA and protein Ffh. It is essential for targeting ribosomes that are translating integral membrane proteins to the translocation pore in the plasma membrane. Independently of Ffh, 4.5S RNA also interacts with elongation factor G (EF-G) and the 30S ribosomal subunit. Here we use a cross-linking approach to probe the conformation of 4.5S RNA in SRP and in the complex with the 30S ribosomal subunit and to map the binding site. The UV-activatable cross-linker p-azidophenacyl bromide (AzP) was attached to positions 1, 21, and 54 of wild-type or modified 4.5S RNA. In SRP, cross-links to Ffh were formed from AzP in all three positions in 4.5S RNA, indicating a strongly bent conformation in which the 5' end (position 1) and the tetraloop region (including position 54) of the molecule are close to one another and to Ffh. In ribosomal complexes of 4.5S RNA, AzP in both positions 1 and 54 formed cross-links to the 30S ribosomal subunit, independently of the presence of Ffh. The major cross-linking target on the ribosome was protein S7; minor cross-links were formed to S2, S18, and S21. There were no cross-links from 4.5S RNA to the 50S subunit, where the primary binding site of SRP is located close to the peptide exit. The functional role of 4.5S RNA binding to the 30S subunit is unclear, as the RNA had no effect on translation or tRNA translocation on the ribosome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1370821 | PMC |
http://dx.doi.org/10.1261/rna.7219805 | DOI Listing |
bioRxiv
January 2025
Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy.
NOC1, NOC2, and NOC3 are conserved nucleolar proteins essential for regulating ribosomal RNA (rRNA) maturation, a process critical for cellular homeostasis. NOC1, in and yeast, enhances nucleolar activity to sustain rRNA processing, whereas its depletion leads to impaired polysome formation, reduced protein synthesis, and apoptosis. These genes have vertebrate homologs called CEBPZ, NOC2L, and NOC3l.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam.
The ribosomal genes (rDNA genes) encode 47S rRNA which accounts for up to 80% of all cellular RNA. At any given time, no more than 50% of rDNA genes are actively transcribed, and the other half is silent by forming heterochromatin structures through DNA methylation. In cancer cells, upregulation of ribosome biogenesis has been recognized as a hallmark feature, thus, the reduced methylation of rDNA promoter has been thought to support conformational changes of chromatin accessibility and the subsequent increase in rDNA transcription.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, LE1 7RH, UK.
Background: Molecular cytogenetics, utilizing DNA probes, serves as a critical tool for mapping genes to the physical structures of chromosomes.
Methods: In this study, we examined three Allium species: A. cepa L.
J Vis Exp
November 2024
College of Biological and Food Engineering, Hunan University.
To understand karyotype variation in eight populations, detailed karyotypes were meticulously established using chromosomal measurements, fluorescence bands, and rDNA FISH signals. The number of 45S rDNA sites varies from one to five pairs per population, with the most common number per karyotype being four pairs. The 45S rDNA locus is predominantly located in the short arms and terminal regions of chromosomes, while the 5S rDNA locus is found mainly in the short arm and the terminal or proximal regions.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Gene Function and Phenomics, National Institute of Genetics.
Ribosome biogenesis is vital for sustaining stem cell properties, yet its regulatory mechanisms are obscure. Herein, we show unique properties of zebrafish mutants in which spermatogonial stem cells (SSCs) do not differentiate or upregulate rRNAs. Meioc colocalized with Piwil1 in perinuclear germ granules, but Meioc depletion resulted in Piwil1 accumulation in nucleoli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!