Cultivating the uncultivated: a community genomics perspective.

Trends Microbiol

Department of Environmental Science, Policy and Management, and Department of Earth and Planetary Sciences, University of California-Berkeley, Berkeley, CA 94720, USA.

Published: September 2005

Current isolation methods access only a small subset of the total microbial diversity. Although an isolate traditionally has been required for genomic characterization, the advent of sequencing of entire natural microbial communities enables culture-independent genomic analysis. Information about the genetic potential of uncultivated organisms can be used to predict the form of metabolic interdependencies and nutritional requirements. We believe that this could provide the information necessary to bypass bottlenecks that have inhibited cultivation of many microorganisms. However, it might not be practical or possible to isolate all of the vast number of microbial species and strains for laboratory-based characterization. Ultimately, cultivation-independent genomic and genomically enabled approaches could provide a way to directly analyze microbial activity in its geochemical and ecological context.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tim.2005.07.003DOI Listing

Publication Analysis

Top Keywords

cultivating uncultivated
4
uncultivated community
4
community genomics
4
genomics perspective
4
perspective current
4
current isolation
4
isolation methods
4
methods access
4
access small
4
small subset
4

Similar Publications

Following 30 years of sequencing, we assessed the phylogenetic diversity (PD) of >1.5 million microbial genomes in public databases, including metagenome-assembled genomes (MAGs) of uncultivated microbes. As compared to the vast diversity uncovered by metagenomic sequences, cultivated taxa account for a modest portion of the overall diversity, 9.

View Article and Find Full Text PDF

Exploring the efficacy of drought tolerant, IAA-producing plant growth-promoting rhizobacteria for sustainable agriculture.

Plant Signal Behav

December 2025

Laboratory of Research and Teaching in Animal Health and Biotechnology, Bobo-Dioulasso, Burkina Faso.

The growing human population and abiotic stresses pose significant threats to food security, with PGPR favorable as biofertilizers for plant growth and stress relief. In one study, soil samples from both cultivated and uncultivated plants in various cities were used to isolate rhizobacterial populations. Using 50 soil samples from both cultivated and uncultivated plants, isolated rhizobacterial populations were screened for various biochemical changes, PGP activities and morphological characteristics.

View Article and Find Full Text PDF

Microbial eukaryotes (aka protists) are known for their important roles in nutrient cycling across different ecosystems. However, the composition and function of protist-associated microbiomes remains largely elusive. Here, we employ cultivation-independent single-cell isolation and genome-resolved metagenomics to provide detailed insights into underexplored microbiomes and viromes of over 100 currently uncultivable ciliates and amoebae isolated from diverse environments.

View Article and Find Full Text PDF

Azotobacter biodiversity in Egypt using microbiological, biochemical, and molecular-biology multidisciplinary approach.

Genetica

January 2025

Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt.

The presence of Azotobacter bacteria in the soil plays an important role in increasing its fertility and enhancing plant health. Azotobacter diversity depends on several environmental factors, particularly soil texture, pH, and nutrient content. The current study investigated the diversity of Azotobacter in various soil samples collected from 10 different governorates along the river Nile valley and its delta, Northern Mediterranean shore, Sinai, and Upper Egypt regions.

View Article and Find Full Text PDF

The lack of a robust system to reproducibly propagate HRV-C, a family of viruses refractory to cultivation in standard cell lines, has substantially hindered our understanding of this common respiratory pathogen. We sought to develop an organoid-based system to reproducibly propagate HRV-C, and characterize virus-host interaction using respiratory organoids. We demonstrate that airway organoids sustain serial virus passage with the aid of CYT387-mediated immunosuppression, whereas nasal organoids that more closely simulate the upper airway achieve this without any intervention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!