Changes in chemical composition and collagen structure of dentine tissue after erbium laser irradiation.

Spectrochim Acta A Mol Biomol Spectrosc

Centro de Lasers e Aplicações CLA Instituto de Pesquisas Energéticas e Nucleares IPEN/CNEN-SP, Avenue Lineu Prestes, 2242 Cidade Universitária, 05508-900 São Paulo, SP, Brazil.

Published: September 2005

Erbium laser radiation has a great affinity for the water molecule, which is present in quantity in biological hard tissues. The objective of this work is to identify chemical changes by infrared spectroscopy of irradiated dentine by an Er:YAG-2.94 microm laser. The irradiation was performed with fluences between 0.365 and 1.94 J/cm2. For the infrared analysis a Fourier transform infrared spectrometer was used. After the irradiation were observed: loss of water, alteration of the structure and composition of the collagen, and increase of the OH- radical. These alterations can be identified by a decrease in intensity of the water band between 2800-3800 cm(-1), OH- band at 3575 cm(-1) and bands ascribed to organic matrix between 2800-3400 cm(-1) and 1100-1400 cm(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2004.09.026DOI Listing

Publication Analysis

Top Keywords

composition collagen
8
erbium laser
8
laser irradiation
8
changes chemical
4
chemical composition
4
collagen structure
4
structure dentine
4
dentine tissue
4
tissue erbium
4
irradiation erbium
4

Similar Publications

Fabrication and applications of biofunctional collagen biomaterials in tissue engineering.

Int J Biol Macromol

January 2025

Polymer Lab, Chemistry Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Darul Ridzuan, Malaysia. Electronic address:

Collagen is extensively used in tissue engineering for various organ tissue regeneration due to the main component of human organ extracellular matrix (ECM) and their inherent nature bioactivity. Collagen various types naturally exist in different organ ECMs. Collagen fabricated with natural ECM mimics architecture, composition and mechanical properties for various organ tissue regeneration.

View Article and Find Full Text PDF

The effect of the foreign body response on drug elution from subdermal delivery systems.

Biomaterials

January 2025

Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA. Electronic address:

Contrasting findings are presented in the literature regarding the influence of foreign body response (FBR) on drug release from implantable drug delivery systems. To this end, here we sought direct evidence of the effect of the fibrotic tissue on subcutaneous drug release from long-acting drug delivery implants. Specifically, we investigated the pharmacokinetic impact of fibrotic encapsulation on a small molecule drug, islatravir (293 Da), and a large protein, IgG (150 kDa), administered via biocompatible implants.

View Article and Find Full Text PDF

Current understanding of the histology of the dermoskeleton of tetrapods comes from fossilized and recent remains of skulls, osteoderms, carapace, plastron and other postcranial material which were always investigated using linear cross polarized light (LCPL) microscopy. The pectoral girdle of vast majority of non-amniote tetrapods, including temnospondyls evolved large ventrally located dermal bones- the interclavicle and a pair of clavicles. Despite that, there is a lack of information about the bone tissue structure from these postcranial dermal bones.

View Article and Find Full Text PDF

Estrogen Deficiency alters Vascularization and Mineralization dynamics: insight from a novel 3D Humanized and Vascularized Bone Organoid Model.

Am J Physiol Cell Physiol

January 2025

Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, Ireland.

Osteoporosis is not merely a disease of bone loss but also involves changes in the mineral composition of the bone that remains. studies have investigated these changes and revealed that estrogen deficiency alters osteoblast mineral deposition, osteocyte mechanosensitivity and osteocyte regulation of osteoclastogenesis. During healthy bone development, vascular cells stimulate bone mineralization via endochondral ossification, but estrogen deficiency impairs vascularization.

View Article and Find Full Text PDF

The human patellar tendon contains distinct fascicle bundles across its mediolateral and anteroposterior regions. Studies have suggested region-specific behaviour during in vivo actions, but it is unclear whether such regional differences result from localized variation in composition and mechanical properties within the tendon itself. Furthermore, the viscoelastic properties of any region of the human patellar tendon have not been well described previously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!