Electrochemical impedance spectroscopy of polyelectrolyte multilayer modified gold electrodes: influence of supporting electrolyte and temperature.

Langmuir

LEQA, Laboratório de Electroquímica e Química Analítica, CIQ-L4 Departamento de Química, Faculdade de Ciências do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.

Published: August 2005

Electrochemical impedance spectroscopy and cyclic voltammetry are employed to characterize poly(styrenesulfonate)/poly(allylamine hydrochloride) multilayers assembled onto cysteamine-modified gold surfaces. The influence of the supporting electrolyte and temperature on the impedance response is studied because of both its practical interest and the need to test further the capillary membrane model recently developed by Barreira et al. [J. Phys. Chem. B 2004, 108, 17973]. The results obtained are interpreted quite satisfactorily in terms of this model, thus providing additional support to its usefulness for the description of ionic transport through polyelectrolyte multilayers. It is observed that the nature of the supporting electrolyte affects the film resistance and the electrode coverage. The temperature dependence of the diffusion coefficient is shown to follow the Arrhenius law, and the activation energy is estimated as 61 kJ/mol. Experiments with a large number of layers are also included to show that the impedance response of the multilayer then resembles that of a homogeneous membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la0507176DOI Listing

Publication Analysis

Top Keywords

supporting electrolyte
12
electrochemical impedance
8
impedance spectroscopy
8
influence supporting
8
electrolyte temperature
8
impedance response
8
spectroscopy polyelectrolyte
4
polyelectrolyte multilayer
4
multilayer modified
4
modified gold
4

Similar Publications

This study investigates the electrochemical degradation mechanisms of nickel-salen (NiSalen) polymers, with a focus on improving the material's stability in supercapacitor applications. We analyzed the effects of steric hindrance near the nickel center by incorporating different bulky substituents into NiSalen complexes, aiming to mitigate water-induced degradation. Electrochemical performance was assessed using cyclic voltammetry, operando conductance, and impedance measurements, while X-ray photoelectron spectroscopy (XPS) provided insights into molecular degradation pathways.

View Article and Find Full Text PDF

This paper summarizes the main findings of a study which aimed to examine the electrochemical oxidation of homovanillic acid (HVA), the final metabolite of dopamine. A pencil graphite electrode (PGE) was used as working electrode and the measurements were performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The type and the composition of the graphite leads used as PGE, the pH of the supporting electrolyte, as well as the scan rates were optimized by CV.

View Article and Find Full Text PDF

Histology Assessment of Chitosan-Polyvinyl Alcohol Scaffolds Incorporated with CaO Nanoparticles.

Molecules

January 2025

Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 760001, Colombia.

Scaffolds for regenerative therapy can be made from natural or synthetic polymers, each offering distinct benefits. Natural biopolymers like chitosan (CS) are biocompatible and biodegradable, supporting cell interactions, but lack mechanical strength. Synthetic polymers like polyvinyl alcohol (PVA) provide superior mechanical strength and cost efficiency but are not biodegradable or supportive of cell adhesion.

View Article and Find Full Text PDF

Bilayer TiO/Mo-BiVO Photoelectrocatalysts for Ibuprofen Degradation.

Materials (Basel)

January 2025

Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece.

Heterojunction formation between BiVO nanomaterials and benchmark semiconductor photocatalysts has been keenly pursued as a promising approach to improve charge transport and charge separation via interfacial electron transfer for the photoelectrocatalytic degradation of recalcitrant pharmaceutical pollutants. In this work, a heterostructured TiO/Mo-BiVO bilayer photoanode was fabricated by the deposition of a mesoporous TiO overlayer using the benchmark P25 titania catalyst on top of Mo-doped BiVO inverse opal films as the supporting layer, which intrinsically absorbs visible light below 490 nm, while offering improved charge transport. A porous P25/Mo-BiVO bilayer structure was produced from the densification of the inverse opal underlayer after post-thermal annealing, which was evaluated on photocurrent generation in aqueous electrolyte and the photoelectrocatalytic degradation of the refractory anti-inflammatory drug ibuprofen under back-side illumination by visible and UV-Vis light.

View Article and Find Full Text PDF

Precise binding free-energy predictions for ligands targeting metalloproteins, especially zinc-containing histone deacetylase (HDAC) enzymes, require specialized computational approaches due to the unique interactions at metal-binding sites. This study evaluates a docking algorithm optimized for zinc coordination to determine whether it could accurately differentiate between protonated and deprotonated states of hydroxamic acid ligands, a key functional group in HDAC inhibitors (HDACi). By systematically analyzing both protonation states, we sought to identify which state produces docking poses and binding energy estimates most closely aligned with experimental values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!