The integral equation (IE) approach coupled with a quasi-Gaussian adsorption energy distribution is used to model the adsorption of single gases and their binary mixture on a heterogeneous solid surface. The adsorbing surface is assumed to be characterized by two, generally different in width, quasi-Gaussian distribution functions, each of them related to a single component of the mixture. The influence of correlations between the distribution functions associated with different components on the corresponding adsorption isotherms and phase diagrams is discussed. In particular, it is demonstrated that a lack of microscopic correlations between the adsorption energies of the components may lead to the formation of an azeotropic mixture. The predictions of the theory are also compared with the results of the grand canonical Monte Carlo (GCMC) simulations carried out for the system studied.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la050192hDOI Listing

Publication Analysis

Top Keywords

quasi-gaussian adsorption
8
adsorption energy
8
energy distribution
8
distribution functions
8
adsorption
6
modeling binary
4
binary adsorption
4
adsorption heterogeneous
4
heterogeneous surfaces
4
surfaces characterized
4

Similar Publications

A site energy distribution function based on a condensation approximation method is proposed for gas-phase adsorption systems following the Toth isotherm. The proposed model is successfully applied to estimate the site energy distribution of three pitch-based activated carbons (PA, PFeA and PBA) developed in our laboratory and also for other common adsorbent materials for different gas molecules. According to the proposed model the site energy distribution curves of the activated carbons are found to be exponential for hydrogen at 77 K.

View Article and Find Full Text PDF

Application of the Nernst-Planck approach to lead ion exchange in Ca-loaded Pelvetia canaliculata.

Water Res

July 2010

LSRE - Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.

Ca-loaded Pelvetia canaliculata biomass was used to remove Pb(2+) in aqueous solution from batch and continuous systems. The physicochemical characterization of algae Pelvetia particles by potentiometric titration and FTIR analysis has shown a gel structure with two major binding groups - carboxylic (2.8 mmol g(-1)) and hydroxyl (0.

View Article and Find Full Text PDF

Copper removal by algal biomass: biosorbents characterization and equilibrium modelling.

J Hazard Mater

April 2009

LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.

The general principles of Cu(II) binding to algal waste from agar extraction, composite material and algae Gelidium, and different modelling approaches, are discussed. FTIR analyses provided a detailed description of the possible binding groups present in the biosorbents, as carboxylic groups (D-glucuronic and pyruvic acids), hydroxyl groups (cellulose, agar and floridean starch) and sulfonate groups (sulphated galactans). Potentiometric acid-base titrations showed a heterogeneous distribution of two major binding groups, carboxyl and hydroxyl, following the quasi-Gaussian affinity constant distribution suggested by Sips, which permitted to estimate the maximum amount of acid functional groups (0.

View Article and Find Full Text PDF

The integral equation (IE) approach coupled with a quasi-Gaussian adsorption energy distribution is used to model the adsorption of single gases and their binary mixture on a heterogeneous solid surface. The adsorbing surface is assumed to be characterized by two, generally different in width, quasi-Gaussian distribution functions, each of them related to a single component of the mixture. The influence of correlations between the distribution functions associated with different components on the corresponding adsorption isotherms and phase diagrams is discussed.

View Article and Find Full Text PDF

Adsorption of protons on a heterogeneous solid surface is modeled using the Monte Carlo (MC) simulation method. The surface of an oxide is assumed to consist of adsorption sites with pK assigned according to a quasi-Gaussian distribution. The influence of the electrostatic interactions combined with the energetic heterogeneity of the surface is examined, and the MC results are compared with the predictions of the mean field theory (MFT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!