The behavior of three copolymers of N-isopropylacrylamide (NIPAM), methacrylic acid (MAA), and hydrophobic moiety was studied at phospholipid monolayer/subphase interfaces. The hydrophobic moieties, N-terminal dioctadecylamine (DODA) and random octadecylacrylate (ODA), were used as anchoring groups. The interactions between a 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC) monolayer and the copolymers were studied using the Langmuir balance technique. The effect of subphase pH, distribution of anchors along the copolymer chain, and copolymer molecular weight on the nature of the interactions between the copolymer chains and the DSPC monolayer were investigated. A first-order kinetics model was used to analyze the copolymers adsorption at the DSPC monolayer/subphase interface and allowed the interaction area between the copolymer chains and the DSPC monolayer, A(x), to be determined. The interaction area appears to depend on the subphase pH and the copolymer molecular weight. On decreasing pH, the interaction area of high molecular weight copolymers increases significantly; this is consistent with the copolymer chain phase transition from an extended coil to a collapsed globule while pH is lowered. In the latter conformation, strong hydrophobic attractive interactions between the copolymer chains and the hydrophobic part of the DSPC monolayer favor the copolymer intercalation, which could eventually provoke the phospholipidic layer destabilization or rupture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la050120q | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!