Beta sheet peptides (e.g., amyloid beta) are known to form ion channels in lipid bilayers possibly through aggregation, though the channel structure is not clear. We have recently reported that a short beta sheet peptide, (xSxG)(6), forms porin-like voltage-gated channels in lipid bilayers [Thundimadathil et al. (2005) Biochem. Biophys. Res. Commun. 330, 585-590]. To account for the porin-like activity, oligomerization of the peptide into a beta barrel-like structure was proposed. In this work, peptide aggregation in aqueous and membrane environments and a detailed study of channel properties were performed to gain insight into the mechanism of channel formation. The complex nature of the channel was revealed by kinetic analysis and the occurrence of interconverting multiple conductance states. Ion channels were inhibited by Congo red, suggesting that the peptide aggregates are the active channel species. Peptide aggregation and fibril formation in water were confirmed by electron microscopy (EM) and Congo red binding studies. Furthermore, oligomeric structures in association with lipid bilayers were detected. Circular dichroism of peptide-incorporated liposomes and peptide-lipid binding studies using EM suggest a lipid-induced beta sheet aggregation. Gel electrophoresis of peptide-incorporated liposomes showed dimeric and multimeric structures. Taken together, this work indicates insertion of (xSxG)(6) as oligomers into the lipid bilayer, followed by rearrangement into a beta barrel-like pore structure. A large peptide pore comprising several individual beta sheets or smaller beta sheet aggregates is expected to have a complex behavior in membranes. A dyad repeat sequence and the presence of glycine, serine, and hydrophobic residues in a repeated pattern in this peptide may be providing a favorable condition for the formation of a beta barrel-like structure in lipid bilayers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi0508643 | DOI Listing |
Ageing Res Rev
January 2025
Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India.
Neurodegenerative diseases (NDs) are debilitating disorders characterized by the progressive and selective loss of function or structure in the brain and spinal cord. Both chronic and acute forms of these diseases are associated with significant morbidity and mortality, as they involve the degeneration of neurons in various brain regions. Misfolding and aggregation of amyloid proteins into oligomer and β-sheet rich fibrils share as common hallmark and lead to neurotoxicity.
View Article and Find Full Text PDFFood Chem
January 2025
School of Food Science and Technology, State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, China. Electronic address:
Anions have more pronounced effect on the aggregation power of proteins than cations. Herein, the effect of different types of anions on rice glutelin (RG) based fibrils formation was investigated. The fibrils yield and growth rate of RG were enhanced with various anions, due to the specific ions effect and intermolecular interaction.
View Article and Find Full Text PDFBackground: Aggregated TDP-43 is found as the main component of pathological inclusions in amyotrophic lateral sclerosis (ALS), limbic-predominant age-related TDP-43 encephalopathy (LATE), in 50% of patients with frontotemporal dementia (FTD), and is present as co-pathology in other neurodegenerative diseases, including Alzheimer's disease (AD). Biofluid or imaging biomarkers of TDP-43 pathology are currently unavailable. Direct detection of TDP-43 aggregates holds promise for unraveling the pathobiology of disease and for enabling precision medicine approach via improved diagnosis, patient stratification and assessment of therapeutic efficacy in clinical trials in AD and related diseases.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Nuclear Medicine, Dankook University College of Medicine, Cheonan, Chungnam, Korea, Republic of (South).
Background: Macro laser light-sheet illuminating microscopy (Macro-LSFM), allied with tissue clearing technologies, herald a transformative paradigm in biomedical imaging, allowing 3D visualization of neuropathologic networks in a transparent intact mouse brain. Moreover, although traditional focus of AD diagnostic has been on CNS pathology, emerging research points to peripheral amyloid-beta deposition, specifically in the eyeball, as an avenue for investigation. Coupled with conventional [F]flutemetamol PET/CT imaging, this study leverages the innovative imaging capabilities of Macro-LSFM with hydrophilic tissue-clearing technique to elucidate the 3D spatial distribution of AD-associated neuroinflammation and neuropathologic change both in the brain and eyeball of old transgenic AD mouse.
View Article and Find Full Text PDFBackground: Recent advances in optical clearing and light sheet imaging have opened an exciting new avenue for brain-wide, cellular resolution immunostaining at the forefront of a dimensional shift from 2D to 3D histology. When looking for read-outs of genetic or pharmacological manipulations that affect the entire brain, traditional 2D immunohistochemistry approaches limit observations to brain regions of interest. Providing access to the intricate anatomy of the whole intact brain, tissue clearing offers neuroscientists unbiased and complete views of brain anatomy and function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!