Isotypes of vertebrate tubulin have variable amino acid sequences, which are clustered at their C-terminal ends. Isotypes bind colchicine at different on-rates and affinity constants. The kinetics of colchicine binding to purified (unfractionated) brain tubulin have been reported to be biphasic under pseudo-first-order conditions. Experiments with individual isotypes established that the presence of beta(III) in the purified tubulin is responsible for the biphasic kinetics. Because the isotypes mainly differ at the C termini, the colchicine-binding kinetics of unfractionated tubulin and the beta(III) isotype, cleaved at the C termini, have been tested under pseudo-first-order conditions. Removal of the C termini made no difference to the nature of the kinetics. Sequence alignment of different beta isotypes of tubulin showed that besides the C-terminal region, there are differences in the main body as well. To establish whether these differences lie at the colchicine-binding site or not, homology modeling of all beta-tubulin isotypes was done. We found that the isotypes differed from each other in the amino acids located near the A ring of colchicine at the colchicine-binding site on beta tubulin. While the beta(III) isotype has two hydrophilic residues (serine(242) and threonine(317)), both beta(II) and beta(IV) have two hydrophobic residues (leucine(242) and alanine(317)). beta(II) has isoleucine at position 318, while beta(III) and beta(IV) have valine at that position. Thus, these alterations in the nature of the amino acids surrounding the colchicine site could be responsible for the different colchicine-binding kinetics of the different isotypes of tubulin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275128 | PMC |
http://dx.doi.org/10.1021/bi050599l | DOI Listing |
Food Chem
December 2024
National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China. Electronic address:
Systematic research is still lacking on the content of hydrophilic compounds in Fu Brick Tea (FBT) from major Chinese production regions and their variation patterns during the processing of FBT. This study utilized optimized non-targeted (UHPLC-Q-Exactive Orbitrap-MS) and targeted (UHPLC-QqQ-MS) metabolomics to analyze 73 FBT samples from six regions of China and 30 samples from different stages of FBT processing. 573 and 74 hydrophilic compounds were respectively relatively and absolutely quantified for the first time.
View Article and Find Full Text PDFFood Chem
December 2024
Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China. Electronic address:
The growing demand for minimally processed foods has heightened the risk of pathogenic contamination. Balancing antimicrobial efficacy with the preservation of probiotic activity remains a significant challenge. In this study, we employed phage display peptide library screening, combined with next-generation sequencing to identify the HIMPIQA domain, which selectively targets pathogenic Escherichia coli (E.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Food Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. Electronic address:
Atemoya fruit deteriorates rapidly during post-harvest storage. A complete understanding of the metabolic mechanisms underlying this process is crucial for developing effective preservation strategies. Metabolomic approaches combined with machine learning offer new opportunities to identify quality-related biomarkers.
View Article and Find Full Text PDFFood Chem
December 2024
UMR IATE, Univ Montpellier, INRAE, Institut-Agro Montpellier, F-34060 Montpellier, France. Electronic address:
The effect of dehulling and cooking on the in vitro digestibility, and phenolic profiles was evaluated for four Dutch sorghum varieties (HD7 and HD19, Sorghum bicolor; and HD100 and HD101 Sorghum nigricans) bred in the Netherlands. Protein content ranged from 9 to 14 % and grains with black pericarp were more resistant to dehulling. Essential amino acids composition analysis showed that the lysine chemical score (∼0.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China.
This study investigates the metabolic disruptions caused by nicotine (NIC) exposure, with a particular focus on amino acid and lipid metabolism, and evaluates resveratrol (RSV) as a potential protective agent. Mice were divided into four groups: control (CON), NIC-exposed, NIC + RSV-treated, and RSV-only. NIC exposure resulted in significant weight loss, elevated glucose levels, altered lipid profiles, and organ damage, particularly in the liver and kidneys.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!