The soilborne fungus Fusarium oxysporum f. sp. radicis-lycopersici causes tomato foot and root rot (TFRR), which can be controlled by the addition of the nonpathogenic fungus F. oxysporum Fo47 to the soil. To improve our understanding of the interactions between the two Fusarium strains on tomato roots during biocontrol, the fungi were labeled using different autofluorescent proteins as markers and subsequently visualized using confocal laser scanning microscopy. The results were as follows. i) An at least 50-fold excess of Fo47over F. oxysporum f. sp. radicis-lycopersici was required to obtain control of TFRR. ii) When seedlings were planted in sand infested with spores of a single fungus, Fo47 hyphae attached to the root earlier than those of F. oxysporum f. sp. radicis-lycopersici. iii) Subsequent root colonization by F. oxysporum f. sp. radicis-lycopersici was faster and to a larger extent than that by Fo47. iv) Under disease-controlling conditions, colonization of tomato roots by the pathogenic fungus was significantly reduced. v) When the inoculum concentration of Fo47 was increased, root colonization by the pathogen was arrested at the stage of initial attachment to the root. vi) The percentage of spores of Fo47 that germinates in tomato root exudate in vitro is higher than that of the pathogen F. oxysporum f. sp. radicis-lycopersici. Based on these results, the mechanisms by which Fo47 controls TFRR are discussed in terms of i) rate of spore germination and competition for nutrients before the two fungi reach the rhizoplane; ii) competition for initial sites of attachment, intercellular junctions, and nutrients on the tomato root surface; and iii) inducing systemic resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1094/MPMI-18-0710DOI Listing

Publication Analysis

Top Keywords

oxysporum radicis-lycopersici
20
tomato foot
8
root
8
foot root
8
root rot
8
tomato roots
8
root colonization
8
tomato root
8
tomato
6
oxysporum
6

Similar Publications

Comparison of Secondary Metabolite Extraction Methods in Jacq. and Their Inhibitory Effect on f. sp. .

Metabolites

January 2025

Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, Tlaxcala C.P. 90700, Mexico.

: Jacq. (HP) is widely recognized in traditional medicine for its antimicrobial properties, which are attributed to secondary metabolites such as phenolic compounds, alkaloids, and terpenes. f.

View Article and Find Full Text PDF

Endophytic microbes in medicinal plants often possess beneficial traits for plant health. This study focuses on the bacterial endophyte strain B.L.

View Article and Find Full Text PDF

Characterisation of f. sp. - in Infected Tomatoes in Inner Mongolia, China.

J Fungi (Basel)

August 2024

Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China.

Fusarium crown and root rot (FCRR), caused by f. sp. (FORL), is an economically important disease that affects tomatoes worldwide and has become more prevalent in China in recent years.

View Article and Find Full Text PDF

Phytotoxic Isocassadiene-Type Diterpenoids from Tomato Fusarium Crown and Root Rot Pathogen f. sp. .

J Agric Food Chem

August 2024

Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China.

Fusarium crown and root rot (FCRR) has emerged as a highly destructive soil-borne disease, posing a significant threat to the safe cultivation of tomatoes in recent years. The pathogen of tomato FCRR is f. sp.

View Article and Find Full Text PDF

The present work aims to quantitatively and qualitatively monitor the production of lipopeptide mixtures by Bacillus methylotrophicus DCS1 strain in Landy medium and to investigate the antifungal activities of DCS1 strain and its produced lipopeptides. The in vitro activities were tested by the direct confrontation and agar well diffusion methods, while the in vivo study was carried out in order to test the efficiency of DCS1 bacterial suspension in the control of Fusarium wilt in tomato plants. Identification of lipopeptides by mass spectrometry (LC/MSD-TOF) showed that lipopeptide isoforms produced during the first 24 h and 48 h of fermentation are identical, belonging to bacillomycin D and fengycins A and B homologues with a difference in the yield of production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!