Leukocyte production of reactive oxygen species (ROS) is an essential component of the antimicrobial armament mounted during host defense, but when released to the extracellular milieu ROS can also injure host tissues and provoke inflammation. Polyisoprenyl phosphates (PIPPs) are constituents of human leukocyte membranes that regulate pivotal intracellular enzymes, such as phospholipase D (PLD). We prepared new PIPP mimetics and studied their impact in vivo on leukocyte activation, including ROS generation, in acute inflammation. In a stereospecific and concentration-dependent manner, the PIPP mimetics directly regulated Streptomyces chromofuscus phospholipase D (sPLD) action. The IC(50) for a (Z)-isomer of endogenous presqualene diphosphate (PSDP) was 100 nM. Structure-activity relationships were also determined for PIPP mimetic inhibition of recombinant human PLD1b, a prominent isoform in human leukocytes. The PIPP mimetic rank order for PLD1b inhibition differed from sPLD, although the (Z)-PSDP isomer remained the most potent PIPP mimetic for inhibition of both enzymes. Truncation of PLD1b to its catalytic core uncovered potential regulatory roles for both PSDP's isoprenoid and diphosphate moieties. The (Z)-PSDP isomer reduced ROS production by activated human leukocytes and decreased murine neutrophil accumulation (65.6%) and ROS production (38.5%) in vivo during zymosan A-initiated peritonitis. When administered intraperitoneally 2 h after zymosan A, the (Z)-PSDP isomer decreased in vivo neutrophil accumulation (72.5%) and ROS generation (74.4%) 6 h later in peritoneal exudates. Together, these results provide new means to protect and control unchecked inflammatory responses that characterize many human diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1440714 | PMC |
http://dx.doi.org/10.1038/sj.bjp.0706338 | DOI Listing |
J Exp Med
April 2006
Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
Neutrophils play a central role in host defense, inflammation, and tissue injury. Recent findings indicate a novel role for polyisoprenyl phosphates (PIPPs) as natural down-regulatory signals in neutrophils. The relationship between PIPPs and neutrophil early activating signals, such as phosphoinositides, has not been previously determined.
View Article and Find Full Text PDFProstaglandins Leukot Essent Fatty Acids
January 2006
Department of Chemistry and the Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089, USA.
The lipoxins (LX) are a class of potent endogenous oxygenated products that are enzymatically generated from arachidonic acid and have novel anti-inflammatory properties and promote resolution. Elucidation of the biochemical pathways involved in the metabolic inactivation of LX and the discovery of the aspirin-triggered lipoxins (ATL) provided the basis for the design and synthesis of stable analogs of LX and ATL. This special issue review describes the efforts that led to the design and synthesis of stable LX/ATL mimetics, which permitted the detailed elucidation of their novel biological roles, leading to the development of new anti-inflammatory agents that mimic their actions.
View Article and Find Full Text PDFBr J Pharmacol
October 2005
Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Leukocyte production of reactive oxygen species (ROS) is an essential component of the antimicrobial armament mounted during host defense, but when released to the extracellular milieu ROS can also injure host tissues and provoke inflammation. Polyisoprenyl phosphates (PIPPs) are constituents of human leukocyte membranes that regulate pivotal intracellular enzymes, such as phospholipase D (PLD). We prepared new PIPP mimetics and studied their impact in vivo on leukocyte activation, including ROS generation, in acute inflammation.
View Article and Find Full Text PDFAnn N Y Acad Sci
April 2000
Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115 USA.
Activation of neutrophil (PMN) surface receptors can evoke inflammation and tissue injury via aberrant release of excess effectors. The molecular mechanisms involved in host protection and control of PMN responses have yet to be defined. As Billah and coworkers (1989), and Exton (1997), for example, have pointed out, phospholipase D (PLD) signaling is known to play a pivotal role in PMN activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!