NFAT and Osterix cooperatively regulate bone formation.

Nat Med

Department of Cell Signaling, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan.

Published: August 2005

Immunosuppressants are crucial in the prevention of detrimental immune reactions associated with allogenic organ transplantation, but they often cause adverse effects in a number of biological systems, including the skeletal system. Calcineurin inhibitors FK506 and cyclosporin A inhibit nuclear factor of activated T cells (NFAT) activity and induce strong immunosuppression. Among NFAT proteins, NFATc1 is crucial for the differentiation of bone-resorbing osteoclasts. Here we show FK506 administration induces the reduction of bone mass despite a blockade of osteoclast differentiation. This reduction is caused by severe impairment of bone formation, suggesting that NFAT transcription factors also have an important role in the transcriptional program of osteoblasts. In fact, bone formation is inhibited in Nfatc1- and Nfatc2-deficient cells as well as in FK506-treated osteoblasts. Overexpression of NFATc1 stimulates Osterix-dependent activation of the Col1a1 (encoding type I collagen) promoter, but not Runx2-dependent activation of the Bglap1 (encoding osteocalcin) promoter. NFAT and Osterix form a complex that binds to DNA, and this interaction is important for the transcriptional activity of Osterix. Thus, NFAT and Osterix cooperatively control osteoblastic bone formation. These results may provide important insight into the management of post-transplantation osteoporosis as well as a new strategy for promoting bone regeneration in osteopenic disease.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nm1270DOI Listing

Publication Analysis

Top Keywords

bone formation
16
nfat osterix
12
osterix cooperatively
8
nfat
6
bone
6
cooperatively regulate
4
regulate bone
4
formation
4
formation immunosuppressants
4
immunosuppressants crucial
4

Similar Publications

Unraveling melorheostosis: insights into clinical features, diagnosis, and treatment.

JBMR Plus

February 2025

Clinical Trials and Outcomes Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, United States.

Melorheostosis is a rare bone disease characterized by abundant bone formation with a characteristic radiographic appearance that resembles "dripping candle wax." Recent data have shown that the majority of cases are due to somatic activating mutations in bone. Melorheostosis has several clinical and radiographic presentations, which are now known to be caused by different somatic mutations such as , , , and .

View Article and Find Full Text PDF

Purpose: Cartilage repair necessitates adjunct therapies such as cell-based approaches, which commonly use MSCs and chondrocytes but is limited by the formation of fibro-hyaline cartilage. Articular cartilage-derived chondroprogenitors(CPs) offer promise in overcoming this, as they exhibit higher chondrogenic and lower hypertrophic phenotypes. The study aimed to compare the efficacy of various cell types derived from adult and foetal cartilage suspended in platelet-rich plasma(PRP) in repairing chondral defects in an Ex-vivo Osteochondral Unit(OCU) model.

View Article and Find Full Text PDF

FGFR2 directs inhibition of WNT signaling to regulate anterior fontanelle closure during skull development.

Development

January 2025

Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.

The calvarial bones of the infant skull are linked by transient fibrous joints known as sutures and fontanelles, which are essential for skull compression during birth and expansion during postnatal brain growth. Genetic conditions caused by pathogenic variants in FGFR2, such as Apert, Pfeiffer, Crouzon syndromes, result in calvarial deformities due to premature suture fusion and a persistently open anterior fontanelle (AF). In this study we investigated how Fgfr2 regulates AF closure by leveraging mouse genetics and single-cell transcriptomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!