Infection of poultry with Salmonella enterica serovar Typhimurium poses a significant risk to public health through contamination of meat from infected animals. Vaccination has been proposed to control infections in chickens. However, the vaccines are currently largely empirical, and our understanding of the mechanisms that underpin immune clearance and protection in avian salmonellosis is not complete. In this study we describe the cytokine, chemokine, and antibody responses and cellular changes in primary and secondary infections of chickens with Salmonella serovar Typhimurium. Infection of 1-week-old chickens induced early expression of a macrophage inflammatory protein (MIP) family chemokine in the spleen and liver, followed by increased expression of gamma interferon accompanied by increased numbers of both CD4(+) and CD8(+) T cells and the formation of granuloma-like follicular lesions. This response correlated with a Th1-mediated clearance of the systemic infection. Primary infection also induced specific immunoglobulin M (IgM), IgG, and IgA antibody responses. In contrast to previously published studies performed with newly hatched chicks, the expression levels of proinflammatory cytokines in the gastrointestinal tract were not greatly increased following infection. However, significant expression of the anti-inflammatory cytokine transforming growth factor beta4 was detected in the gut early in infection. Following secondary challenge, the birds were fully protected against systemic infection and showed a high level of protection against gastrointestinal colonization. Rapid expression of the MIP family chemokine and interleukin-6 was detected in the guts of these birds and was accompanied by an influx of lymphocytes. Increased levels of serum IgA-specific antibodies were also found following rechallenge. These findings suggest that cellular responses, particularly Th1 responses, play a crucial role in immune clearance in avian salmonellosis and that protection against rechallenge involves the rapid recruitment of cells to the gastrointestinal tract. Additionally, the high levels of inflammatory response found following Salmonella serovar Typhimurium infection of newly hatched chicks were not observed following infection of older birds (1 week old), in which the expression of regulatory cytokines appeared to limit inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1201213 | PMC |
http://dx.doi.org/10.1128/IAI.73.8.5173-5182.2005 | DOI Listing |
Pharmaceuticals (Basel)
December 2024
Instrumental Analysis Open Access Centre, Vytautas Magnus University, LT-44404 Kaunas, Lithuania.
A variety of phytochemicals from different plants are collected by bees into bee pollen granules. This research focused on evaluating the effects of lactic acid fermentation and enzymatic hydrolysis on the antibacterial activity of bee pollen and its interaction with antibiotics. There is limited knowledge regarding the interactions between treated bee pollen extracts and antibiotics, and this study contributes to the field by providing new insights into the antibacterial activity of pollen subjected to eight distinct treatment methods.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania.
Background/objectives: This study aims to characterize antibiotic resistance (AR) and virulence markers in spp. isolated from Romanian outpatients' stool samples.
Methods: In 2019, community-acquired strains were collected and identified using MALDI-TOF mass spectrometry, antibiotic susceptibility profiles have been determined with the MicroScan system, and soluble virulence factors were evaluated using specific culture media, while biofilm formation was quantified in 96-well plates.
Animals (Basel)
January 2025
Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy.
In an era dominated by the phenomenon of antibiotic resistance, it is increasingly important to look for alternatives to synthetic antibiotics. In light of these considerations, the synergistic use of essential oils and Antimicrobial Peptides (AMPs) seems a viable strategy. In this study, we assessed the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Fractional Inhibitory Concentration (FIC) of three Essential Oils (EOs): winter savory (), bergamot () and cinnamon () and of the insect antimicrobial peptide Cecropin A (CecA), alone and in combination with EOs, against two Gram-negative ATCC bacterial strains: and serovar Typhimurium.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Food Hygiene and Nutrition Service, Local Health Unit 3, Department of Prevention, 16142 Genoa, Italy.
is considered the major zoonotic and foodborne pathogen responsible for human infections. It includes the serovars causing typhoid fever ( and ) and the non-typhoidal salmonella (NTS) serovars ( and ), causing enteric infections known as "Salmonellosis". NTS represents a major public health burden worldwide.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
Background: Salmonella enterica serovar Typhimurium is one of the most common serovars of Salmonella associated with clinical cases. It not only leads to diarrhea and mortality raised in livestock and poultry farming, but also poses a risk to food safety.
Results: In this study, a lytic bacteriophage named ZK22 was isolated and identified from sewage.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!