Listeria monocytogenes is a gram-positive intracellular pathogen that can enter phagocytic and nonphagocytic cells and colonize their cytosols. Taking advantage of this property to generate an intracellular vaccine delivery vector, we previously described a mutant strain of L. monocytogenes, Deltadal Deltadat, which is unable to synthesize cell wall by virtue of deletions in two genes (dal and dat) required for d-alanine synthesis. This highly attenuated strain induced long-lived protective systemic and mucosal immune responses in mice when administered in the transient presence of d-alanine. We have now increased the usefulness of this organism as a vaccine vector by use of an inducible complementation system that obviates the need for exogenous d-alanine administration. The strain expresses a copy of the Bacillus subtilis racemase gene under the control of a tightly regulated isopropyl-beta-d-thiogalactopyranoside (IPTG)-inducible promoter present on a multicopy plasmid. This bacterium demonstrates strict dose-dependent growth in the presence of IPTG. After removal of inducer, bacterial growth ceased within two replication cycles. Following infection of mice in the absence of IPTG or d-alanine, the bacterium survived in vivo for less than 3 days. Nevertheless, a single immunization elicited a state of long-lasting protective immunity against wild-type L. monocytogenes and induced a subset of effector listeriolysin O-specific CD11a(+) CD8(+) T cells in spleen and other tissues that was strongly enhanced after secondary immunization. This improved L. monocytogenes vector system may have potential use as a live vaccine against human immunodeficiency virus, other infectious diseases, and cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1201188 | PMC |
http://dx.doi.org/10.1128/IAI.73.8.5065-5073.2005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!