Upregulation of adrenomedullin and its receptor components during cardiomyocyte hypertrophy induced by chronic inhibition of nitric oxide synthesis in rats.

Am J Physiol Heart Circ Physiol

Division of Medicine and Therapeutics, School of Medicine, The Queen's Univ. of Belfast, Whitla Medical Bldg., 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom.

Published: February 2006

Adrenomedullin may provide a compensatory mechanism to attenuate left ventricular hypertrophy (LVH). Nitric oxide synthase inhibition, induced by chronic administration of N(omega)-nitro-L-arginine methyl ester (L-NAME) to rats, induces cardiac hypertrophy in some, but not all cases; there are few reports of direct assessment of cardiomyocyte parameters. The objective was to characterize hypertrophic parameters in left (LV) and right ventricular (RV) cardiomyocytes after administration of L-NAME to rats for 8 wk and to determine whether adrenomedullin and its receptor components were upregulated. After treatment with L-NAME (20 and 50 mg x kg(-1) x day(-1)), compared with nontreated animals, 1) systolic blood pressure increased (by 34.2 and 104.9 mmHg), 2) heart weight-to-body wt ratio increased 24.1% at the higher dose (P < 0.05), 3) cardiomyocyte protein mass increased (P = NS), 4) cardiomyocyte protein synthesis ([14C]phenylalanine incorporation) increased (P < 0.05), 5) expression of skeletal alpha-actin, atrial natriuretic peptide, brain natriuretic peptide, and ET-1 mRNAs was enhanced (P < 0.05) in LV but not RV cardiomyocytes at 20 and 50 mg x kg(-1) x day(-1), respectively, and 6) expression of adrenomedullin, receptor activity-modifying protein 3 (RAMP3), and RAMP2 (but not calcitonin receptor-like receptor and RAMP1) mRNAs was increased by L-NAME (20 mg x kg(-1) x day(-1)) in LV. In conclusion, L-NAME enhanced protein synthesis in both LV and RV cardiomyocytes but elicited a hypertrophic phenotype accompanied by altered expression of the counterregulatory peptide adrenomedullin and receptor components (RAMP2, RAMP3) in LV only, indicating that the former is due to impaired nitric oxide synthesis, whereas the phenotypic changes are due to pressure overload.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00152.2005DOI Listing

Publication Analysis

Top Keywords

adrenomedullin receptor
16
receptor components
12
nitric oxide
12
kg-1 day-1
12
induced chronic
8
oxide synthesis
8
left ventricular
8
l-name rats
8
l-name kg-1
8
cardiomyocyte protein
8

Similar Publications

Adrenomedullin 2/Intermedin Exerts Cardioprotective Effects by Regulating Cardiomyocyte Mitochondrial Function.

Hypertension

January 2025

Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan. (Y. Zhao, T. Sakurai, A.K., M.T., Y.I.-S., H.K., Y.M., Y. Zhang, Q.G., P.L., K.H., M.H., J.L., T. Shindo).

Background: Adrenomedullin 2 (AM2) plays critical roles in regulating blood pressure and fluid balance. However, the specific involvement of AM2 in cardiac hypertrophy has not been comprehensively elucidated, warranting further investigation into its molecular mechanisms and therapeutic implications.

Methods: Cardiac hypertrophy was induced in adult mice lacking AM2 (AM2-/-) using transverse aortic constriction surgery.

View Article and Find Full Text PDF

Anxiety disorder, a prevalent mental health issue, is one of the leading causes of disability worldwide. Damage to the blood-brain barrier (BBB) is implicated in anxiety, but its regulatory mechanisms remain unclear. Herein, we show that adrenomedullin 2 (ADM2), a novel angiogenic growth factor, alleviates autistic and anxiety-like behaviors in mice.

View Article and Find Full Text PDF

Background: Ischemic heart disease is a prevalent cause of death and disability worldwide. Recent studies reported a rapid expansion of the cardiac lymphatic network upon ischemic heart injury and proposed that cardiac lymphatics may attenuate tissue edema and inflammatory mechanisms after ischemic heart injury. Nevertheless, the mechanisms through which hypoxic conditions affect cardiac lymphangiogenesis and function remain unclear.

View Article and Find Full Text PDF

Male-female comparison of vasomotor effects of circulating hormones in human intracranial arteries.

J Headache Pain

December 2024

Department of Clinical Sciences, Faculty of Medicine, Lund University, Getingevagen 4, Lund, 22185, Sweden.

Background: The purpose of this study was to examine whether there are sex differences in vasomotor responses and receptor localization of hormones and neuropeptides with relevance to migraine (vasopressin, oxytocin, estrogen, progesterone, testosterone, amylin, adrenomedullin and calcitonin gene-related peptide (CGRP)) in human intracranial arteries.

Methods: Human cortical cerebral and middle meningeal arteries were used in this study. The tissues were removed in conjunction with neurosurgery and donated with consent.

View Article and Find Full Text PDF

Sex differences in expression of CGRP family of receptors and ligands in the rat trigeminal system.

J Headache Pain

November 2024

Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.

Article Synopsis
  • Calcitonin gene-related peptide (CGRP) is a significant member of the calcitonin family and is concentrated in the trigeminovascular system (TVS), which is relevant for migraine treatment.
  • The study involved dissection of trigeminal ganglia from male and female rats, assessing the expression of various peptides and their receptors using techniques like immunohistochemistry and RT-qPCR.
  • Results indicated a higher expression of CGRP mRNA in both genders, a notable increase of receptor activity-modifying protein-1 (RAMP1) in females, and the presence of varying peptides and receptors localized in the TG neurons, emphasizing CGRP's crucial role in the TVS.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!