Effect of vitamin C and L-NMMA on the inotropic response to dobutamine in patients with heart failure.

Am J Physiol Heart Circ Physiol

Cardiovascular Clinical Research Laboratory, Div. of Cardiology, Mount Sinai Hospital, 600 University Ave., Rm. 1543, Toronto, Ontario, Canada M5G 1X5.

Published: December 2005

The positive effect of vitamin C on left ventricular (LV) inotropic responses to dobutamine, observed in patients with preserved LV function, is lost in heart failure (HF). We tested the hypothesis that in HF, endogenous nitric oxide (NO) opposes the positive effect of vitamin C on adrenergically stimulated contractility by examining the effects of vitamin C on dobutamine responses during NO synthase inhibition. In 11 HF patients, a micromanometer-tipped catheter was inserted into the LV and an infusion catheter was positioned in the left main coronary artery. The peak positive rate of change of LV pressure (LV +dP/dt) was measured in response to intravenous dobutamine (Dob-1). After recontrol, intracoronary N(G)-monomethyl-L-arginine (l-NMMA) was infused before reinfusion of dobutamine (L-NMMA + Dob-2). Finally, intracoronary vitamin C was infused in addition to intracoronary L-NMMA and dobutamine (L-NMMA + Dob-2 + vitamin C). Intracoronary L-NMMA alone had no effect on LV +dP/dt. After a stable inotropic response to intracoronary L-NMMA and dobutamine was established, the addition of intracoronary vitamin C resulted in a modest but significant increase in LV +dP/dt. The change in LV +dP/dt in response to dobutamine alone was 25 +/- 5%, with intracoronary L-NMMA, 27 +/- 6%, and with intracoronary L-NMMA plus vitamin C, 37 +/- 5% (P < 0.05 vs. Dob-1 and L-NMMA + Dob-2). These findings demonstrate that an interaction between endogenous NO and redox environment exists and exerts some influence on stimulated contractility in HF.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00453.2005DOI Listing

Publication Analysis

Top Keywords

intracoronary l-nmma
20
l-nmma dob-2
12
l-nmma
9
vitamin
8
inotropic response
8
dobutamine
8
response dobutamine
8
heart failure
8
positive vitamin
8
stimulated contractility
8

Similar Publications

Aims: To investigate in vivo relationships between segmental wall shear stress (WSS), endothelium-dependent vasoreactivity and arterial remodelling.

Methods And Results: Twenty-four patients with minor angiographic coronary arterial disease (≤30% stenosis severity) underwent intracoronary (IC) salbutamol provocation during intravascular ultrasound (IVUS)-upon-Doppler guidewire imaging. Macrovascular response (change in segmental lumen volume [SLV] at baseline and following IC salbutamol), plaque burden (percent atheroma volume [PAV]), remodelling indices (RI), eccentricity indices (EI) and WSS were evaluated in 179 consecutive 5 mm coronary segments.

View Article and Find Full Text PDF

Background: We have previously demonstrated that endothelium-derived hydrogen peroxide (H2O2) is an endothelium-derived hyperpolarizing factor (EDHF) in canine coronary microcirculation in vivo. However, the role of H2O2/EDHF during angiotensin type 1 receptor blockers (ARB) administration in metabolic coronary dilatation in vivo remains to be examined. We examined whether H2O2 during ARB administration is involved in pacing-induced metabolic coronary vasodilatation in dogs in vivo and if so, whether such beneficial effects of ARB administration acutely improve coronary vasodilatation in diabetes mellitus (DM).

View Article and Find Full Text PDF

Myocardial protection by co-administration of L-arginine and tetrahydrobiopterin during ischemia and reperfusion.

Int J Cardiol

October 2013

Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden. Electronic address:

Background: Reduced bioavailability of nitric oxide (NO) is a key factor contributing to myocardial ischemia and reperfusion injury. The mechanism behind the reduction of NO is related to deficiency of the NO synthase (NOS) substrate L-arginine and cofactor tetrahydrobiopterin (BH4) resulting in NOS uncoupling. The aim of the study was to investigate if the combination of L-arginine and BH4 given iv or intracoronary before reperfusion protects from reperfusion injury.

View Article and Find Full Text PDF

Endothelial nitric oxide synthase (eNOS) was assumed to be the only source of nitric oxide (NO) involved in the regulation of human coronary blood flow (CBF). However, our recent first-in-human study using the neuronal NOS (nNOS)-selective inhibitor S-methyl-L-thiocitrulline (SMTC) showed that nNOS-derived NO also plays a role. In this study, we investigated the relative contribution of nNOS and eNOS to the CBF response to a pacing-induced increase in cardiac workload.

View Article and Find Full Text PDF

Consumption of L-arginine contributes to reduced bioavailability of nitric oxide (NO) that is critical for the development of ischemia-reperfusion injury. The aim of the study was to determine myocardial arginase expression and activity in ischemic-reperfusion myocardium and whether local inhibition of arginase within the ischemic myocardium results in increased NO production and protection against myocardial ischemia-reperfusion. Anesthetized pigs were subjected to coronary artery occlusion for 40 min followed by 4 h reperfusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!