AI Article Synopsis

  • Circadian clocks in plants provide a significant photosynthetic advantage by aligning their internal timing with the external light-dark cycle.
  • Studies on Arabidopsis thaliana showed that plants with synchronized circadian periods have higher chlorophyll levels, increased carbon fixation, faster growth rates, and improved survival.
  • This research highlights the benefits of circadian control in plants, explaining how it enhances their overall performance in their environment.

Article Abstract

Circadian clocks are believed to confer an advantage to plants, but the nature of that advantage has been unknown. We show that a substantial photosynthetic advantage is conferred by correct matching of the circadian clock period with that of the external light-dark cycle. In wild type and in long- and short-circadian period mutants of Arabidopsis thaliana, plants with a clock period matched to the environment contain more chlorophyll, fix more carbon, grow faster, and survive better than plants with circadian periods differing from their environment. This explains why plants gain advantage from circadian control.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1115581DOI Listing

Publication Analysis

Top Keywords

circadian clocks
8
advantage circadian
8
clock period
8
advantage
5
plant circadian
4
clocks increase
4
increase photosynthesis
4
photosynthesis growth
4
growth survival
4
survival competitive
4

Similar Publications

An antagonistic role of clock genes and lima1 in kidney regeneration.

Commun Biol

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China.

The circadian clock genes are known important for kidney development, maturation and physiological functions. However, whether and how they play a role in renal regeneration remain elusive. Here, by using the single cell RNA-sequencing (scRNA-seq) technology, we investigated the dynamic gene expression profiles and cell states after acute kidney injury (AKI) by gentamicin treatment in zebrafish.

View Article and Find Full Text PDF

Light-regulated microRNAs shape dynamic gene expression in the zebrafish circadian clock.

PLoS Genet

January 2025

School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China.

A key property of the circadian clock is that it is reset by light to remain synchronized with the day-night cycle. An attractive model to explore light input to the circadian clock in vertebrates is the zebrafish. Circadian clocks in zebrafish peripheral tissues and even zebrafish-derived cell lines are entrainable by direct light exposure thus providing unique insight into the function and evolution of light regulatory pathways.

View Article and Find Full Text PDF

Circadian Proteomics Reassesses the Temporal Regulation of Metabolic Rhythms by Chlamydomonas Clock.

Plant Cell Environ

January 2025

Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonipat, India.

Circadian clocks execute temporal regulation of metabolism by modulating the timely expression of genes. Clock regulation of mRNA synthesis was envisioned as the primary driver of these daily rhythms. mRNA oscillations often do not concur with the downstream protein oscillations, revealing the importance to study protein oscillations.

View Article and Find Full Text PDF

Earth's rotation around its axis has pressured its inhabitants to adapt to 24 h cycles of day and night. Humans adapted their own circadian rhythms to the Earth's rhythms with a light-aligned awake-sleep cycle. As a consequence, metabolism undergoes drastic changes throughout the circadian cycle and needs plasticity to cope with opposing conditions in the day (when there is an increase in energy demands and food availability), and during the night (when prolonged fasting couples with cyclic changes in the energy demands across the sleep stages).

View Article and Find Full Text PDF

: Chronobiology has gained attention in the context of paediatric neurological and neuropsychiatric disorders, including migraine, epilepsy, autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and post-traumatic stress disorder (PTSD). Disruptions in circadian rhythms are associated with key symptoms such as sleep disturbances, mood dysregulation, and cognitive impairments, suggesting a potential for chronobiology-based therapeutic approaches. : This narrative review employs a systematic approach to identify relevant studies through searches of three major scientific databases, NCBI/PubMed, ScienceDirect, and Scopus, up to July 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!