Regulation of volume-sensitive Cl- channels in multi-drug resistant MCF7 cells.

Biochem Biophys Res Commun

Laboratory of Ecotoxicology UPRES-EA 3222, IFRMP 23, University of Le Havre, 25 rue Philippe Lebon, 76058 Le Havre cedex, France.

Published: September 2005

The P-glycoprotein (P-gp) is thought to be involved in the regulation of volume-sensitive chloride channels. In this study, the possible coupling between P-gp and swelling-activated chloride channels has been examined in MCF7 cells with sensitive (MDR-), resistant (MDR+), and reversed resistant (MDR(REV)) phenotypes. Western blot analysis showed that incubation of cells with doxorubicin induced P-gp expression in a reversible manner. Exposure of MDR+ cells to hypotonicity resulted in an inhibition of P-gp activity while hypotonic challenges induced swelling-activated chloride currents (I(Cl-swell)) in MDR-, MDR+, and MDR(REV) MCF7 cells. While verapamil inhibited I(Cl-swell) in all cell types, doxorubicin and vincristine rapidly and reversibly inhibited I(Cl-swell) uniquely in MDR+. Intracellular dialysis of MDR+ cells with C219 anti-P-gp antibody abolished the sensitivity of I(Cl-swell) to doxorubicin and led to a response pattern very close to that of MDR- cells. Taken together, these results strongly suggest that the P-glycoprotein regulates I(Cl-swell) in resistant MCF7.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2005.07.010DOI Listing

Publication Analysis

Top Keywords

mcf7 cells
12
regulation volume-sensitive
8
resistant mcf7
8
cells p-glycoprotein
8
chloride channels
8
swelling-activated chloride
8
mdr+ cells
8
inhibited icl-swell
8
cells
7
mdr+
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!