Mast cell mediators in citric acid-induced airway constriction of guinea pigs.

Toxicol Appl Pharmacol

Department of Physiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 100, Taiwan.

Published: August 2005

We demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. In this study, we further investigated the underlying mediator(s) for this type of airway constriction. At first, to examine effects caused by blocking agents, 67 young Hartley guinea pigs were divided into 7 groups: saline + CA; methysergide (serotonin receptor antagonist) + CA; MK-886 (leukotriene synthesis inhibitor) + CA; mepyramine (histamine H1 receptor antagonist) + CA; indomethacin (cyclooxygenase inhibitor) + CA; cromolyn sodium (mast cell stabilizer) + CA; and compound 48/80 (mast cell degranulating agent) + CA. Then, we tested whether leukotriene C4 (LTC4) or histamine enhances CA-induced airway constriction in compound 48/80-pretreated guinea pigs. We measured dynamic respiratory compliance (Crs) and forced expiratory volume in 0.1 s (FEV0.1) during either baseline or recovery period. In addition, we detected histamine level, an index of pulmonary mast cell degranulation, in bronchoalveolar lavage (BAL) samples. Citric acid aerosol inhalation caused decreases in Crs and FEV0.1, indicating airway constriction in the control group. This airway constriction was significantly attenuated by MK-886, mepyramine, cromolyn sodium, and compound 48/80, but not by either methysergide or indomethacin. Both LTC4 and histamine infusion significantly increased the magnitude of CA-induced airway constriction in compound 48/80-pretreated guinea pigs. Citric acid inhalation caused significant increase in histamine level in the BAL sample, which was significantly suppressed by compound 48/80. These results suggest that leukotrienes and histamine originating from mast cells play an important role in CA inhalation-induced noncholinergic airway constriction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2004.11.023DOI Listing

Publication Analysis

Top Keywords

airway constriction
32
mast cell
16
guinea pigs
16
citric acid
12
ca-induced airway
12
compound 48/80
12
airway
8
constriction
8
mast cells
8
cells play
8

Similar Publications

In asthma, tissue factor (TF) levels are elevated in the lung. In our previous studies using mechanically compressed human bronchial epithelial (HBE) cells, which are a well-defined in vitro model of bronchoconstriction during asthma exacerbations, we detected TF within extracellular vesicles (EVs) released from compressed HBE cells. Here, to better characterize the potential role of this mechanism in asthma, we tested the extent to which the transcriptional regulation of epithelial cell-derived TF varied between donors with and without asthma.

View Article and Find Full Text PDF

Objectives: To compare the variations in the upper airway of children with skeletal Class II mandibular retrognathism treated with van Beek Headgear-Activator (vBHGA) and Twin-Block (TB) appliances.

Materials And Methods: 40 children were involved in this retrospective study and divided into two intervention groups: the vBHGA group and the TB group, each comprising 20 individuals with an average age of 11.13 years.

View Article and Find Full Text PDF

Analysis of risk factors for benign central airway stenosis after COVID-19 infection.

Eur J Med Res

December 2024

Henan Institute of Interconnected Intelligent Health, Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China.

Background: To investigate the risk factors associated with benign central airway stenosis following COVID-19 infection.

Methods: The clinical data of 235 patients hospitalized for COVID-19 infection at the First Affiliated Hospital of Zhengzhou University from October 2022 to October 2023 were retrospectively analyzed. Based on the occurrence of postoperative central airway stenosis, the patients were categorized into a stenosis group (118 cases) and a control group (117 cases).

View Article and Find Full Text PDF

Cardiac secreted HSP90α exacerbates pressure overload myocardial hypertrophy and heart failure.

Redox Biol

December 2024

Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; NHC Key Laboratory of Ischemic Heart Diseases, and Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China. Electronic address:

Sustained myocardial hypertrophy or left ventricular hypertrophy (LVH) triggered by pressure overload is strongly linked to adverse cardiovascular outcomes. Here, we investigated the clinical relationship between serum HSP90α (an isoform of HSP90) levels and LVH in patients with hypertension or aortic stenosis (AS) and explored underlying mechanisms in pressure overload mouse model. We built a pressure overload mouse model via transverse aortic constriction (TAC).

View Article and Find Full Text PDF

Airway Remodeling in Cystic Fibrosis Is Heterogeneous.

Ann Am Thorac Soc

December 2024

UZ Leuven, Department of Pediatric Pulmonology, Leuven, Vlaams-Brabant, Belgium;

RATIONALE+OBJECTIVE/ Cystic fibrosis (CF) is characterized by bronchiectasis on imaging, while functionally evolving towards obstructive impairment. Despite its assumed importance in CF, small airway remodeling and its relation to bronchiectasis, is still poorly understood. METHOD/ On high-resolution computed tomography (HRCT, 600µm, CF=21, control=6) and micro-computed tomography (µCT, 150µm, CF=3, control=1) scans of inflated explant lungs, AV% (airway/total lung volume) was calculated as marker for bronchiectasis, while airway segmentation was used for generation analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!