The platelet-derived growth factor (PDGF) family, which regulates many physiological and pathophysiological processes has recently been enlarged by two new members, the isoforms PDGF-C and -D. Little is known about the expression levels of these new members in hepatic fibrosis. We therefore investigated by quantitative real time PCR (Taqman) the mRNA expression profiles of all four PDGF isoforms in transdifferentiating primary cultured hepatic stellate cells (HSC), an in vitro model system of hepatic fibrogenesis, either with or without stimulation of the cells with PDGF-BB or TGF-beta1. All four isoforms were expressed in HSC transdifferentiating to myofibroblast-like cells (MFB) albeit with different profiles: while PDGF-A mRNA exhibited minor fluctuations only, PDGF-B was rapidly down-regulated. In contrast, both PDGF-C and -D mRNA were strongly induced: PDGF-C up to 5 fold from day 2 to day 8 and PDGF-D up to 8 fold from day 2 to day 5 of culture. Presence of PDGF-DD in activated HSC was confirmed at the protein level by immunocytochemistry. Stimulation of HSC and MFB with PDGF-BB led to down-regulation of the new isoforms, whereas TGF-beta1 upregulated PDGF-A only. We further show that PDGF receptor-beta (PDGFR-beta) mRNA was rapidly upregulated within the first day of culture and was constantly expressed from day 2 on while the expression profile of PDGFR-alpha mRNA was very similar to that of PDGF-A during transdifferentiation. Given the dramatic changes in PDGF-C and -D expression, which may compensate for down-regulation of PDGF-B, we hypothesize that the new PDGF isoforms may fulfil specific functions in hepatic fibrogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cyto.2005.06.005 | DOI Listing |
J Control Release
January 2025
Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China. Electronic address:
Liver fibrosis is a prevalent liver disease associated with significant morbidity, and the activation of hepatic stellate cells (HSCs) serves as the primary causative factor driving the progression of liver fibrosis. However, capillarization of liver sinusoidal endothelial cells (LSECs) induced by hepatic fibrosis can reduce nitric oxide (NO) production and bioavailability, which consequently loses the ability to retain HSCs dormant, leading to amplified HSCs activation. Herein, an elaborate micelle (VN-M@BN) loaded with benazepril (BN) was constructed by self-assembly of polymeric NO donor, aiming for the controlled release of NO in liver fibrosis lesions thereby impeding the progression of liver fibrosis.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Faculty of Medicine and Dentistry, William Harvey Research Institute, Barts and The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
Metabolic dysfunction-associated steatotic liver disease (MASLD), hepatic fibrosis, and portal hypertension constitute an increasing public health problem due to the growing prevalence of obesity and diabetes. C-type natriuretic peptide (CNP) is an endogenous regulator of cardiovascular homeostasis, immune cell reactivity, and fibrotic disease. Thus, we investigated a role for CNP in the pathogenesis of MASLD.
View Article and Find Full Text PDFDrug Res (Stuttg)
January 2025
Xi'an Eighth Hospital, Xi'an, China.
To investigate the effect of 1α,25(OH)D on hepatic stellate cells and the mechanism of the TGF-β1/Smad signaling pathway.LX2 cells were treated with TGF-β1 and different concentrations of 1α,25(OH)D. Cell proliferation was assessed using the CCK8 assay to determine the optimal concentration of 1α,25(OH)D activity.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China.
Liver disease constitutes a significant cause of global mortality, with its pathogenesis being multifaceted. Identifying effective pharmacological and preventive strategies is imperative for liver protection. Ginsenosides, the major bioactive compounds found in ginseng, exhibit multiple pharmacological activities including protection against liver-related diseases by mitigating liver fat accumulation and inflammation, preventing hepatic fibrosis, and exerting anti-hepatocarcinogenic effects.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
College of Korean Medicine, Gachon University, Seongnam, 13120, South Korea. Electronic address:
Obesity due to excessive body fat accumulation remains a global problem. Patients with obesity have high cortisol levels, and its dysregulation is caused by increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) levels. The effects and mechanism of J2H-1702, an 11β-HSD1 inhibitor, on nonalcoholic steatohepatitis (NASH) were explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!