Drosophila melanogaster has been intensely studied for almost 100 years. The sophisticated array of genetic and molecular tools that have evolved for analysis of gene function in this organism are unique. Further, Drosophila is a complex multi-cellular organism in which many aspects of development and behavior parallel those in human beings. These combined advantages have permitted research in Drosophila to make seminal contributions to the understanding of fundamental biological processes and ensure that Drosophila will continue to provide unique insights in the genomic era. An overview of the genetic methodologies available in Drosophila is given here, together with examples of outstanding recent contributions of Drosophila to our understanding of cell and organismal biology. The growing contribution of Drosophila to our knowledge of gravity-related responses is addressed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

drosophila
8
drosophila melanogaster--the
4
melanogaster--the model
4
model organism
4
organism choice
4
choice complex
4
complex biology
4
biology multi-cellular
4
multi-cellular organisms
4
organisms drosophila
4

Similar Publications

Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in Drosophila melanogaster, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA.

View Article and Find Full Text PDF

Theory of morphodynamic information processing: Linking sensing to behaviour.

Vision Res

January 2025

Centre for Brain and Behaviour, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK.

The traditional understanding of brain function has predominantly focused on chemical and electrical processes. However, new research in fruit fly (Drosophila) binocular vision reveals ultrafast photomechanical photoreceptor movements significantly enhance information processing, thereby impacting a fly's perception of its environment and behaviour. The coding advantages resulting from these mechanical processes suggest that similar physical motion-based coding strategies may affect neural communication ubiquitously.

View Article and Find Full Text PDF

In vitro and in vivo assessment of nanoceria biocompatibility for their safe use in nervous system applications.

J Hazard Mater

December 2024

Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, A Coruña 15071, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, As Xubias, A Coruña 15006, Spain. Electronic address:

Nanoceria, or cerium dioxide nanoparticles (CeO NP), are increasingly employed in a number of industrial and commercial applications. Hence, the environmental presence of these nanoparticles is growing progressively, enhancing the global concern on their potential health effects. Recent studies suggest that nanoceria may also have promising biomedical applications particularly in neurodegenerative and brain-related pathologies, but studies addressing their toxicity, and specifically on the nervous system, are still scarce, and their potential adverse effects and action mechanism are not totally understood yet.

View Article and Find Full Text PDF

We analysed here the dynamic of the kinesin-like Pavarotti (Pav) during male gametogenesis of wild-type and Sas4 mutant flies. Pav localizes to the equatorial region and the inner central spindle of late anaphase wild-type spermatogonia and displays a strong concentration at the midbody during late telophase. At metaphase of the first meiotic division, Pav shows widespread localization on the equatorial region of the spermatocytes.

View Article and Find Full Text PDF

For a proper representation of the causal structure of the world, it is adaptive to consider both evidence for and evidence against causality. To take punishment as an example, the causality of a stimulus is unlikely if there is a temporal gap before punishment is received, but causality is credible if the stimulus immediately precedes punishment. In contrast, causality can be ruled out if the punishment occurred first.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!