The human Plasma Proteome Project pilot phase aims to analyze serum and plasma specimens to elucidate specimen characteristics by various proteomic techniques to ensure sufficient sample quality for the HUPO main phase. We used our proprietary peptidomics technologies to analyze the samples distributed by HUPO. Peptidomics summarizes technologies for visualization, quantitation, and identification of the low-molecular-weight proteome (<15 kDa), the "peptidome." We analyzed all four HUPO specimens (EDTA plasma, citrate plasma, heparin plasma, and serum) from African- and Asian-American donors and compared them to in-house collected Caucasian specimens. One main finding focuses on the most suitable method of plasma specimen collection. Gentle platelet removal from plasma samples is beneficial for improved specificity. Platelet contamination or activation of platelets by low temperature prior to their removal leads to distinct and multiple peptide signals in plasma samples. Two different specimen collection protocols for platelet-poor plasma are recommended. Further emphasis is placed on the differences between plasma and serum on a peptidomic level. A large number of peptides, many of them in rather high abundance, are only present in serum and not detectable in plasma. This ex vivo generation of multiple peptides hampers discovery efforts and is caused by a variety of factors: the release of platelet-derived peptides, other peptides derived from cellular components or the clot, enzymatic activities of coagulation cascades, and other proteases. We conclude that specimen collection is a crucial step for successful peptide biomarker discovery in human blood samples. For analysis of the low-molecular-weight proteome, we recommend the use of platelet-depleted EDTA or citrate plasma.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200401219DOI Listing

Publication Analysis

Top Keywords

plasma specimens
8
peptidomic analysis
4
analysis human
4
human blood
4
blood specimens
4
specimens comparison
4
comparison plasma
4
specimens serum
4
serum differential
4
differential peptide
4

Similar Publications

Background: Except host and environmental factors influencing individual human cytokine responses, pre-analytical handling procedures and detection methods also affect cytokine levels.

Methods: In this study, we used cytometric bead array (CBA) and chemiluminescence (ECL). These two methods were used to test serum and plasma samples from 50 healthy adult volunteers and 50 rheumatoid arthritis (RA) patients' cytokine levels.

View Article and Find Full Text PDF

Shotgun metagenomics offers a broad detection of pathogens for rapid blood stream infection of pathogens but struggles with often low numbers of pathogens combined with high levels of human background DNA in clinical samples. This study aimed to develop a shotgun metagenomics protocol using blood spiked with various bacteria and to assess bacterial DNA extraction efficiency with human DNA depletion. The Blood Pathogen Kit (Molzym) was used to extract DNA from EDTA-whole blood (WB) and plasma samples, using contrived blood specimens spiked with bacteria for shotgun metagenomics diagnostics via Oxford Nanopore sequencing and PCR-based library preparation.

View Article and Find Full Text PDF

%diag_test: a generic SAS macro for evaluating diagnostic accuracy measures for multiple diagnostic tests.

BMC Med Inform Decis Mak

January 2025

Institute of Mathematical Sciences Centre for Health Analytics and Modelling (CHaM), Strathmore University, Nairobi, Kenya.

Background: Measures of diagnostic test accuracy provide evidence of how well a test correctly identifies or rules-out disease. Commonly used diagnostic accuracy measures (DAMs) include sensitivity and specificity, predictive values, likelihood ratios, area under the receiver operator characteristic curve (AUROC), area under precision-recall curves (AUPRC), diagnostic effectiveness (accuracy), disease prevalence, and diagnostic odds ratio (DOR) etc. Most available analysis tools perform accuracy testing for a single diagnostic test using summarized data.

View Article and Find Full Text PDF

Synchrotron X-ray micro-computed tomography enhances our knowledge of the skull anatomy of a Late Triassic ecteniniid cynodont with hypercanines.

Anat Rec (Hoboken)

January 2025

Instituto de Plasmas e Fusão Nuclear & Centro de Recursos Naturais e Ambiente (CERENA), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.

Hypercanines, or hypertrophied canines, are observed in a wide range of both extinct and extant synapsids. In non-mammaliaform cynodonts, the Permo-Triassic forerunners of mammals, long canines are not uncommon, appearing in several unrelated taxa within the clade. Among them is Trucidocynodon riograndensis, a carnivorous ecteniniid cynodont from the Late Triassic of Brazil, which exhibits a specialized dentition, including spear-shaped incisors, very long and narrow canines, and sectorial postcanines with distally oriented cusps, all of which have finely serrated margins.

View Article and Find Full Text PDF

Determination of alkali metal elements in solid biomass fuel by laser-induced breakdown spectroscopy: Analysis and reduction of chemical matrix effects.

Anal Chim Acta

February 2025

School of Electric Power Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, Guangzhou, Guangdong, 510641, China. Electronic address:

Background: Rapid and accurate detection of the biomass potassium (K) content in biomass is crucial for mitigating ash deposition and fouling issues in biomass fuel combustion processes. Laser-induced breakdown spectroscopy (LIBS) offers a promising approach for rapid analysis of biomass elemental. However, the accuracy of LIBS detection is susceptible to chemical matrix effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!