Quantitative colocalization analysis is a powerful tool for reliable estimation of the colocalization of antigens. We employed it to determine the changes of colocalization of multidrug resistance protein 2 (Mrp2) and bile salt export pump (Bsep) in confocal immunofluorescence microscopy images of rat liver following lipopolysaccharide (LPS) administration. Samples were taken 2, 24, 48 hours, and 1 week after LPS challenge. Pearson's correlation coefficient (PCC), an overlap coefficient according to Manders' (MOC), and overlap coefficients k1 and k2 were used to explore changes of the degree of colocalization. In intact animals, confocal microscopy showed tight colocalization of Mrp2 and Bsep proteins exclusively at the bile canaliculi. High degree of colocalization was confirmed quantitatively. Injection of LPS resulted in the appearance of fuzzy-looking areas of fluorescence of both proteins around bile canaliculi 2 and 24 hours after administration and relocation of Mrp2 protein to the basolateral domain of hepatocytes at 48 hours. By 1 week, canalicular localization was restored morphologically. Quantitative colocalization analysis of canalicular regions showed a steady decrease of the degree of colocalization of Mrp2 and Bsep up to 48 hours with the slight increase of its value by 1 week. These findings demonstrate that Mrp2, in contrast to Bsep, is partially and reversibly relocated from canalicular to basolateral domain of hepatocytes after LPS challenge.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.20184DOI Listing

Publication Analysis

Top Keywords

colocalization mrp2
12
mrp2 bsep
12
quantitative colocalization
12
degree colocalization
12
colocalization
10
bsep proteins
8
colocalization analysis
8
hours week
8
lps challenge
8
bile canaliculi
8

Similar Publications

Epimedii Folium (EF) is a botanical dietary supplement to benefit immunity. Baohuoside I (BI), a prenylated flavonoid derived from EF, has exhibited the cholestatic risk before. Here, the mechanism of BI on the stability and membrane localization of liver MRP2, a bile acid exporter in the canalicular membrane of hepatocytes, was investigated.

View Article and Find Full Text PDF

Optimization of Canalicular ABC Transporter Function in HuH-7 Cells by Modification of Culture Conditions.

Drug Metab Dispos

October 2019

College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea (H.E.K.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (H.E.K., M.M.M., C.S., P.H., K.L.R.B.) and Department of Pharmacology, UNC School of Medicine (C.S.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (M.M.M., P.H.)

Human hepatoma cell lines are useful for evaluation of drug-induced hepatotoxicity, hepatic drug disposition, and drug-drug interactions. However, their applicability is compromised by aberrant expression of hepatobiliary transporters. This study was designed to evaluate whether extracellular matrix (Matrigel) overlay and dexamethasone (DEX) treatment would support cellular maturation of long-term HuH-7 hepatoma cell cultures and improve the expression, localization, and activity of canalicular ATP-binding cassette (ABC) transporters, multidrug resistance protein 1 (MDR1/P-glycoprotein/ABCB1), multidrug resistance-associated protein 2 (MRP2/ABCC2), and bile salt export pump (BSEP/ABCB11).

View Article and Find Full Text PDF

Mechanisms of canalicular transporter endocytosis in the cholestatic rat liver.

Biochim Biophys Acta Mol Basis Dis

April 2018

Instituto de Fisiología Experimental (IFISE) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 570, S2002LRL Rosario, Argentina. Electronic address:

Impaired canalicular secretion due to increased endocytosis and intracellular retention of canalicular transporters such as BSEP and MRP2 is a main, common pathomechanism of cholestasis. Nevertheless, the mechanisms governing this process are unknown. We characterized this process in estradiol 17 β-d-glucuronide (E17G)-induced cholestasis, an experimental model which partially mimics pregnancy-induced cholestasis.

View Article and Find Full Text PDF

Kidney versus Liver Specification of SLC and ABC Drug Transporters, Tight Junction Molecules, and Biomarkers.

Drug Metab Dispos

July 2016

Department of Pediatrics (G.M., K.T.B., S.K.N.), Department of Medicine, Division of Nephrology and Hypertension, (S.K.N.), and Department of Cellular and Molecular Medicine (S.K.N.), University of California, San Diego, La Jolla, California

The hepatocyte nuclear factors, Hnf1a and Hnf4a, in addition to playing key roles in determining hepatocyte fate, have been implicated as candidate lineage-determining transcription factors in the kidney proximal tubule (PT) [Martovetsky et. al., (2012) Mol Pharmacol 84:808], implying an additional level of regulation that is potentially important in developmental and/or tissue-engineering contexts.

View Article and Find Full Text PDF

Phosphorylation dynamics of radixin in hypoxia-induced hepatocyte injury.

Am J Physiol Gastrointest Liver Physiol

February 2015

Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina

The most prominent ezrin-radixin-moesin protein in hepatocytes is radixin, which is localized primarily at the canalicular microvilli and appears to be important in regulation of cell polarity and in localizing the multidrug resistance-associated protein 2 (Mrp-2) function. Our aim was to investigate how hypoxia affects radixin distribution and Mrp-2 function. We created wild-type and mutant constructs (in adenoviral vectors), which were expressed in WIF-B cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!