Thyroid hormone is a critical mediator of cellular metabolism and differentiation. Precise tissue-specific regulation of the concentration of the active ligand, T(3), is achieved by iodothyronine monodeiodination. Type 3 iodothyronine deiodinase (D3) is the major inactivating pathway, preventing activation of the prohormone T(4) and terminating the action of T(3). Using nontransformed human cells, we show that TGF-beta stimulates transcription of the hDio3 gene via a Smad-dependent pathway. Combinations of Smad2 or Smad3 with Smad4 stimulate hDio3 gene transcription only in cells that express endogenous D3 activity, indicating that Smads are necessary but not sufficient for D3 induction. TGF-beta induces endogenous D3 in diverse human cell types, including fetal and adult fibroblasts from several tissues, hemangioma cells, fetal epithelia, and skeletal muscle myoblasts. Maximum stimulation of D3 by TGF-beta also requires MAPK and is synergistic with phorbol ester and several mitogens known to signal through transmembrane receptor tyrosine kinases but not with estradiol. These data reveal a previously unrecognized interaction between two pluripotent systems, TGF-beta and thyroid hormone, both of which have major roles in the regulation of cell growth and differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1210/me.2005-0173DOI Listing

Publication Analysis

Top Keywords

type iodothyronine
8
iodothyronine deiodinase
8
thyroid hormone
8
hdio3 gene
8
transforming growth
4
growth factor-beta
4
factor-beta promotes
4
promotes inactivation
4
inactivation extracellular
4
extracellular thyroid
4

Similar Publications

Since the early discovery of QRFP43, intensive research has been primarily focused on its role in the modulation of food intake. As is widely recognised, the regulation of the body's energy status is a highly complex process involving numerous systems, hormones and neurotransmitters. Among the most important regulators of energy status, alongside the satiety and hunger centre located in the hypothalamus, is the HPT axis, which directly and indirectly affects the regulation of metabolism in all cells of the body.

View Article and Find Full Text PDF

Background: This study investigated the relationship between serum thyroid hormones and interleukin-1b (IL-1β) levels and postmortem tissue deiodinase activity in critically ill patients.

Methods: Serum thyroid hormones and IL-1β were measured on the 5th, 15th, and last day of 80 critically ill patients. Forty of these patients were non-survived, and liver and skeletal muscle were harvested to analyze type 1, 2, and 3 iodothyronine deiodinases (D1, D2, and D3) activity.

View Article and Find Full Text PDF

Crosstalk between prolactin, insulin-like growth factors, and thyroid hormones in feather growth regulation in neonatal chick wings.

Gen Comp Endocrinol

December 2024

Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan. Electronic address:

The elongation of primary feathers in neonatal chicks is delayed by the late-feathering K gene located on the Z chromosome. We recently found that the K gene slows feather growth by reducing the number of functional prolactin (PRL) receptor (PRLR) dimers. In this study, we investigated the molecular mechanisms by which PRL promotes feather elongation.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma is the sixth most common malignancy reported globally. This highlights the need for reliable biomarkers that can be employed for diagnostic and prognostic applications. The present study aimed to classify and characterize the clinical potential of delta like non-canonical Notch ligand 1-type III iodothyronine deiodinase (DLK1-DIO3) and miR-379/656 cluster genes in hepatocellular carcinoma.

View Article and Find Full Text PDF

The coordinate regulation of metabolism and epigenetics to establish cell state-specific gene expression patterns during lineage progression is a central aspect of cell differentiation, but the factors that regulate this elaborate interplay are not well-defined. The imprinted Dlk1-Dio3 noncoding RNA (ncRNA) cluster has been associated with metabolism in various progenitor cells, suggesting it functions as a regulator of metabolism and cell state. Here, we directly demonstrate that the Dlk1-Dio3 ncRNA cluster coordinates mitochondrial respiration and chromatin structure to maintain proper cell state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!