Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Osteoarthritis (OA) is a degenerative disease characterized by an irreversible loss of articular cartilage. Although surgically induced animal OA models are commonly used in drug efficacy assessment, degradation of type II collagen, an important component of articular cartilage is not routinely evaluated. Here, the medial meniscectomy surgical model (MMT) in Lewis rats was evaluated for proteoglycan loss with toluidine blue staining and collagen degradation with immunohistochemical staining for a collagen cleavage C-neoepitope, using a novel anti-type II collagen neoepitope antigen (TIINE) antibody. Femorotibial joints were collected for histology at 0 (no surgery), 3, 7, 14, 21, 28, 35, and 42 days postsurgery. Following MMT surgery, the medial tibial articular cartilage had proteoglycan matrix loss by day 3 that reached subchondral bone by days 28-42. Femoral cartilage damage occurred by day 14. TIINE staining was present at basal levels in growth plates and articular cartilage of all joints while all MMT-treated animals had increased intensity and area of staining in erosions that colocalized with proteoglycan loss. The MMT model produces a progressive pattern of cartilage damage resembling human OA lesions, making it useful, when evaluated with cartilage biomarkers, for assessing changes in cartilage degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/01926230590965364 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!