Tacrolimus, used in organ transplantation, inhibits cellular immune function. Little is known about the effect on dermal and colonic healing. Groups of 10 rats underwent dorsal skin incision, and polyvinyl alcohol sponges were implanted subcutaneously. Beginning at the day of wounding, rats were treated intraperitoneal with 1.0 or 2.0 mg tacrolimus/kg/day. Animals were sacrificed 10 d later to determine wound breaking strength and reparative collagen deposition. Expression of transforming growth factor (TGF)-beta, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma was studied in wounds. Groups of 8 rats underwent laparotomy and left colonic anastomosis. These rats were treated by subcutaneous injections with 2.0 or 5.0 mg tacrolimus/kg. Animals were sacrificed 5 d later to test colonic bursting pressure and reparative collagen deposition. Expression of TGF-beta, TNF-alpha, IFN-gamma, and CD4 and CD8 in the anastomosis was investigated. Tacrolimus impaired dermal healing (p < .05). This was paralleled by decreased expression of TGF-beta (stimulates healing) and increased expression of IFN-gamma and TNF-alpha (both inhibit healing) (p < .05). In contrast, tacrolimus did not inhibit healing of colonic anastomoses. No effect was seen on the expression of TGF-beta, TNF-alpha, IFN-gamma, and CD4 and CD8 in colonic anastomoses. We concluded that tacrolimus differentially effects tissue healing and expression of cellular mediators in dermal and intestinal wounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08941930590926294 | DOI Listing |
Sci Rep
January 2025
Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, United States.
There are few in vitro models available to study microglial physiology in a homeostatic context. Recent approaches include the human induced pluripotent stem cell model, but these can be challenging for large-scale assays and may lead to batch variability. To advance our understanding of microglial biology while enabling scalability for high-throughput assays, we developed an inducible immortalized murine microglial cell line using a tetracycline expression system.
View Article and Find Full Text PDFPhytomedicine
January 2025
State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; Department of Nephrology, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China. Electronic address:
Background: Huangkui capsule (HKC), a Chinese patent medicine, is clinically used for treating diabetic nephropathy. However, the core disease-specific biomarkers and targets of type 2 diabetic nephropathy (T2DN) and the therapeutic mechanism of HKC are not fully elucidated.
Purpose: This study aimed to investigate the therapeutic effects and underlying molecular mechanisms of HKC for T2DN.
Int Immunopharmacol
January 2025
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China. Electronic address:
Inflammation underlies a wide variety of physiological and pathological processes, the Lipopolysaccharide (LPS)-induced inflammation model is widely recognized as a classical inflammatory paradigm, while Transforming growth factor-β (TGF-β) serves as a potent immunosuppressant capable of inhibiting immune responses and mitigating inflammation. However, its in vivo instability and the high cost associated with purification have imposed limitations on its clinical application. Therefore, we propose a therapeutic strategy for genetically modifying extracellular vesicles (HEVs) derived from HEK-293 T cells to incorporate TGF-β which holds potential for mitigating LPS-induced inflammation.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Health Science Center, Ningbo University, Ningbo, China. Electronic address:
Myasthenia gravis (MG) is a T cell-dependent, B cell-mediated disorder strongly associated with antigen presentation by dendritic cells (DCs). In MG, mucosal tolerance is linked to increased expression of TGF-β mRNA in monocytes. Additionally, monocytic myeloid-derived suppressor cells (M-MDSCs) exhibit negative immunomodulatory effects by suppressing autoreactive T and B cells.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy.
Navelina oranges () are rich in phytonutrients and bioactive compounds, especially flavonoids like hesperidin. This study investigates the anti-inflammatory and anti-fibrotic properties of hesperidin (HE) and a polyphenol mixture from Navelina oranges (OE) in human hepatocytes (Hepa-RG) and hepatic stellate cells (LX-2), in order to elucidate the underlying molecular mechanisms. In Hepa-RG cells, HE treatment increased expression of cannabinoid receptor 2 (CB2R), which was associated with down-regulation of p38 mitogen-activated protein kinases (p38 MAPK) but had minimal impact on cyclooxygenase-2 (COX-2) and transforming growth factor-β (TGF-β) levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!