Absolute cross sections of ozone at atmospheric temperatures for the Wulf and the Chappuis bands.

J Chem Phys

Laboratoire de Spectrométrie Ionique et Moléculaire, Centre National de la Recherche Scientifique, UMR 5579, Université Claude Bernard Lyon 1, Bâtiment Alfred KASTLER, Domaine Universitaire de la DOUA, Villeurbanne, France.

Published: June 2005

Ozone absorption constitutes a variable background against which measurement of pollution is observed from satellites by the solar occultation technique. The temperature-altitude gradient of ozone spans the range 180-340 K. Laboratory measurements of ozone absorption at temperatures across this range are needed to calibrate spectroscopic remote sensing, but have yielded results in substantial disagreement with each other. This paper presents the first measurements of the variation of absorption cross-sections of ozone at temperatures from 144 to 300 K over the 9250-18 500 cm(-1) spectral region.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1937369DOI Listing

Publication Analysis

Top Keywords

ozone absorption
8
ozone
5
absolute cross
4
cross sections
4
sections ozone
4
ozone atmospheric
4
atmospheric temperatures
4
temperatures wulf
4
wulf chappuis
4
chappuis bands
4

Similar Publications

Electrochemical water splitting is a pivotal process for sustainable hydrogen energy production, relying on efficient hydrogen evolution reaction (HER) catalysts, particularly in acidic environments, where both high activity and durability are crucial. Despite the favorable kinetics of platinum (Pt)-based materials, their performance is hindered under harsh conditions, driving the search for alternatives. Due to their unique structural characteristic, Prussian blue analogs (PBAs) emerge as attractive candidates for designing efficient HER electrocatalysts.

View Article and Find Full Text PDF

Use of In Situ X-ray Absorption to Probe Reactivity: A Catalysis Golden Rule.

J Am Chem Soc

December 2024

Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.

The decomposition of ozone on supported manganese oxide catalysts, studied here, exemplifies reactions involving electron transfer. In situ extended X-ray absorption fine-structure spectra (Mn K-edge) on in situ treated samples show that the supported phase in MnO/SiO resembles MnO while that in MnO/AlO samples resembles MnO. In situ Raman spectroscopy shows the involvement of a common peroxide surface species.

View Article and Find Full Text PDF

Carbon nitride grafted with single-atom manganese and 2-hydroxy-4,6-dimethylpyrimidine: A visible-light-driven photocatalyst for enhanced ozonation of organic pollutants.

J Colloid Interface Sci

December 2024

State Key Laboratory of Photocatalysis On Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China. Electronic address:

The development of durable and highly efficient visible-light-driven photocatalysts is essential for the photocatalytic ozonation process towards degrading organic pollutants. This study presents CN-MA, a novel photocatalyst synthesized by grafting carbon nitride (CN) with single-atom Mn and 2-hydroxy-4,6-dimethylpyrimidine (HDMP) via one-step thermal polymerization. Experimental characterization and theoretical calculation results reveal that incorporating single-atom Mn and HDMP into CN alters the charge density distribution on the heptazine rings.

View Article and Find Full Text PDF

Aerosol light absorption has been widely considered as a contributing factor to the worsening of particulate pollution in large urban areas, primarily through its role in stabilizing the planetary boundary layer (PBL). Here, we report that absorption-dominated aerosol-radiation interaction can decrease near-surface fine particulate matter concentrations ([PM]) at a large-scale during wintertime haze events. A "warm bubble" effect by the significant heating rate of absorbing aerosols above the PBL top generates a secondary circulation, enhancing the upward motion (downward motion) and the convergence (divergence) in polluted (relatively clean) areas, with a net effect of lowering near-surface [PM].

View Article and Find Full Text PDF

Photodissociation of the CH2Cl radical: A high-level ab initio study.

J Chem Phys

December 2024

Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain.

Photodissociation of the CH2Cl radical is investigated by using high-level multireference configuration interaction ab initio methods, including the spin-orbit coupling. All possible fragmentation pathways, namely, CH2Cl + hν → CH2 + Cl, HCCl + H, and CCl + H2, have been analyzed. The potential-energy curves of the ground and several excited electronic states along the corresponding dissociating bond distance of each pathway have been calculated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!