Effect of ionic additives on the elution of sodium aryl sulfonates in supercritical fluid chromatography.

J Chromatogr A

Department of Chemistry, University College of Science, Virginia Polytechnic Inst. and State, 107 Davidson Hall, Virginia Tech Blacksburg, VA 24061-0212, USA.

Published: August 2005

Addition of a small amount of polar solvent (i.e., modifier) to CO2 in packed column supercritical fluid chromatography (SFC) has shown major improvements in both polar analyte solubility and interaction of the polar analyte with the stationary phase. Recently, the addition of an ionic component (i.e., additive) to the primary modifier by one of us has been shown to extend even further the application of SFC to polar analytes. In this work, the effect of various ionic additives on the elution of ionic compounds, such as sodium 4-dodecylbenzene sulfonate and sodium 4-octylbenene sulfonate, has been studied. The additives were lithium acetate, ammonium acetate, tetramethylammonium acetate, tetrabutylammonium acetate, and ammonium chloride dissolved in methanol. Three stationary phases with different degrees of deactivation were considered: conventional cyanopropyl, deltabond cyanopropyl, and bare silica. The effect of additive concentration and additive functionality on analyte retention was investigated. Sodium 4-dodecylbenzene sulfonate was successfully eluted using all the additives with good peak shape under isocratic/isobaric/isothermal conditions. Different additives, however, yielded different retention times and in some cases different peak shapes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2005.04.086DOI Listing

Publication Analysis

Top Keywords

ionic additives
8
additives elution
8
supercritical fluid
8
fluid chromatography
8
polar analyte
8
sodium 4-dodecylbenzene
8
4-dodecylbenzene sulfonate
8
acetate ammonium
8
ionic
4
sodium
4

Similar Publications

Nanostructured devices have proven useful in a broad range of applications, from diagnosing diseases to discovering and screening new drug molecules. We developed vertical silicon nanopillar (SiNP) arrays for on-chip multiplex capture of selected biomolecules using a light-induced release of the array's selectively captured biomarkers. This platform allows the rapid, reusable and quantitative capture and release of a selection of biomarkers, followed by their downstream analysis.

View Article and Find Full Text PDF

Role of autophagy in plant growth and adaptation to salt stress.

Planta

January 2025

Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

Under salt stress, autophagy regulates ionic balance, scavenges ROS, and supports nutrient remobilization, thereby alleviating osmotic and oxidative damage. Salt stress is a major environmental challenge that significantly impacts plant growth and agricultural productivity by disrupting nutrient balance, inducing osmotic stress, and causing the accumulation of toxic ions like Na. Autophagy, a key cellular degradation and recycling pathway, plays a critical role in enhancing plant salt tolerance by maintaining cellular homeostasis and mitigating stress-induced damage.

View Article and Find Full Text PDF

Fucoidan and chitosan electrostatically coated nanoliposomes enhance physicochemical stability and bioavailability of rutin.

Int J Biol Macromol

January 2025

School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China. Electronic address:

Rutin, a promising bioactive hydrophobic compound, suffers from poor physicochemical stability, resulting in low bioavailability. Herein, we used positively charged chitosan and negatively charged fucoidan as biopolymers coating rutin-nanoliposome (RNL) via electrostatic layer-by-layer self-assembly approach to prepare fucoidan/chitosan-coated rutin-nanoliposome (FC-RNL). The FC-RNL exhibited the encapsulation efficiency of 77.

View Article and Find Full Text PDF

With the increasing concern of potential loss of transgenic mosquitoes which are candidates as new tools for mosquito-borne disease control, methods for cryopreservation are actively under investigation. Methods to cryopreserve Anopheles gambiae sperm have recently been developed, but there are no artificial insemination or in vitro fertilization tools available. As a step to achieve this, we sought to identify a suitable medium for in vitro incubation of An.

View Article and Find Full Text PDF

Revealing structure-performance relationship of biomimetic cyclodextrin metal-organic framework composite electrolytes for dendrite-free lithium metal batteries.

J Colloid Interface Sci

January 2025

State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029 PR China.

Cyclodextrin metal-organic frameworks (CD-MOFs) with infinitely extensible network structures show potential applications in lithium metal batteries. However, the disordered accumulation of CD-MOF particles leads to slow interparticle diffusion of ions, so the CD-MOF composite electrolytes are needed to be developed. In addition, the influences of CD-MOFs structure on the electrochemical performance of the composite electrolytes remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!