Bacteria from the genus Bacillus have evolved complicated regulatory networks to be protected from various environmental stresses, including sudden increase in salinity. Among these regulatory mechanisms is the DegS-DegU signal transduction system, which controls degradative enzyme synthesis and is involved in sensing salt stress in Bacillus subtilis. We report the study of biosynthesis regulation of Bacillus intermedius glutamyl endopeptidase under salt stress conditions. Salt stress during growth in medium containing 1-2.5 M NaCl, KCl or disodium succinate leads to the induction of glutamyl endopeptidase. Analysis of the regulatory region of the gene for B. intermedius glutamyl endopeptidase revealed the presence of a tentative target sequence for DegU control, AGATN10TTGAG. For the expression of the glutamyl endopeptidase gene, functional DegU protein is required. Thus, we suggest that expression of the gene for B. intermedius glutamyl endopeptidase may be controlled by a regulatory system analogous to DegS-DegU two-component system in B. subtilis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micres.2004.05.005 | DOI Listing |
Int J Biol Macromol
January 2024
Multiuser Center for Biomolecular Innovation, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil. Electronic address:
Mammaliicoccus sciuri, a commensal and pathogenic bacterium of significant clinical and veterinary relevance, expresses exfoliative toxin C (ExhC), a specific glutamyl endopeptidase belonging to the chymotrypsin family as the principal virulence factor. However, unlike most members of this family, ETs are inactive against a wide range of substrates and possess exquisite specificity for desmoglein-1 (Dsg1), a cadherin-like adhesion molecule that is crucial to maintain tissue integrity, thereby preventing the separation of skin cells and the entry of pathogens. ExhC is of clinical importance since in addition to causing exfoliation in pigs and mice, it induces necrosis in multiple mammalian cell lines, a property not observed for other ETs.
View Article and Find Full Text PDFBiochimie
May 2024
Department of Pediatric Dentistry, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan; Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-cho, Iwate, 028-3694, Japan. Electronic address:
We recently reported that the activities of dipeptidyl-peptidase (DPP)7 and DPP11, S46-family exopeptidases were significantly elevated by the presence of prime-side amino acid residues of substrates caused by an increase in k [Ohara-Nemoto Y. et al., J Biol Chem 298(3):101585.
View Article and Find Full Text PDFCeliac disease (CeD) is an immune-mediated chronic disorder triggered by the ingestion of wheat gluten in genetically predisposed individuals. Gluten is a major food ingredient, infamously containing proline and glutamine-rich domains that are highly resistant to digestion by mammalian proteolytic enzymes. Thus, adhering to a gluten-free diet (GFD) is the only known treatment for CeD, albeit with many complications.
View Article and Find Full Text PDFFish Shellfish Immunol
October 2022
Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China. Electronic address:
The glutamyl endopeptidase homolog of Nocardia seriolae (GluNS) has been proved to be a potential virulence factor in our previous study. Present investigation was carried out to construct an attenuated N. seriolae strain by deletion with GluNS gene and evaluate its protective immunity in head snakehead.
View Article and Find Full Text PDFNanoscale
April 2022
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
Gallbladder stones are a major pathogenic factor leading to cholecystitis, and it is increasingly important to explore innovative drug delivery methods for gallstones. In the present study, docosahexaenoic acid-coupled limonene bovine serum albumin nanoparticles (LIM-DHA-BSA-NPs) were constructed. The LIM-DHA-BSA-NPs are spherical structures, and the distribution was relatively uniform, and, more importantly, it has low cytotoxicity and good safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!