Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study a novel approach for the coating and functionalization of substrates for cell culture and tissue engineering is presented. Glass, silicon, and titanium panes were coated with an ultrathin film (30 +/- 5 nm) of reactive star-shaped poly(ethylene glycol) prepolymers (Star PEG). Homogeneity of the films was checked by optical microscopy and scanning force microscopy. These coatings prevent unspecific protein adsorption as monitored by fluorescence microscopy and ellipsometry. In order to allow specific cell adhesion the films were modified with linear RGD peptides (gRGDsc) in different concentrations. After sterilization, fibroblast, SaOS, and human mesenchymal stem cells (hMSC) were seeded on these substrates. Cell adhesion, spreading, and survival was observed for up to 30 days on linear RGD peptide (gRGDsc)-modified coatings, whereas no cell adhesion could be detected on unmodified Star PEG layers. By variation of the RGD concentration within the film the amount of cells that became adhesive could be controlled. When differentiation conditions are used for cultivation of hMSCs the cells show the expression of osteogenic marker genes after 14 days which is comparable to cultivation on cell culture plastic. Thus, the Star PEG/RGD film did not negatively influence the differentiation process. The high flexibility of the system considering the incorporation of biologically active compounds opens a broad field of future experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.30335 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!