Altering the fate of stem cells from midgut of Heliothis virescens:the effect of calcium ions.

Arch Insect Biochem Physiol

Insect Biocontrol Laboratory, U.S. Department of Agriculture, Beltsville, Maryland 20705, USA.

Published: August 2005

Cultured stem cells from larval midgut tissue of the lepidopteran Heliothis virescens respond to alterations in external calcium ion concentration (Ca(2+) (out)) by changing the rate of stem cell proliferation and by differentiating to larval or non-larval phenotypes. Decreasing the external concentration of Ca(2+) with the Ca(2+) chelating agent EGTA increased proliferation of stem cells in culture, and doubled the proportion of cells differentiating to columnar and goblet cells typical of larval midgut compared to controls. In contrast, increasing inward transport of Ca(2+) into the cells by increasing the concentration of external calcium ion concentration, or by incubation with the Ca(2+) ionophore A23187 (which tends to open inward plasma membrane Ca(2+) channels), induced dose-dependent differentiation to non-midgut cell types such as squamous and scale-like cells. However, the latter treatments did not significantly alter stem cell proliferation or differentiation to normal larval midgut epithelium.

Download full-text PDF

Source
http://dx.doi.org/10.1002/arch.20060DOI Listing

Publication Analysis

Top Keywords

stem cells
12
larval midgut
12
external calcium
8
calcium ion
8
ion concentration
8
concentration ca2+
8
stem cell
8
cell proliferation
8
cells
7
ca2+
6

Similar Publications

Introduction: The development of efficient and sustainable catalytic methodolo-gies has garnered considerable attention in contemporary organic synthesis.

Methods: Herein, we present a novel approach employing the Cu@DPP-SPION catalyst for the synthesis of ethyl 4-(aryl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives. This versatile catalytic system incorporates copper nanoparticles supported on 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzoic acid-functionalized superparamagnetic iron oxide nanoparticles (SPIONs).

View Article and Find Full Text PDF

Background: Malaria is one of the leading causes of morbidity and/or mortality in tropical Africa. The spread and development of resistance to chemical antimalarial drugs and the relatively high cost of the latter are problems associated with malaria control and are reasons to promote the use of plants to meet healthcare needs to treat malaria. The aim of this study was to evaluate antiplasmodial activities of extracts of (Mah quat), which is traditionally used for the treatment of malaria in the western region of Cameroon.

View Article and Find Full Text PDF

Purification and transcriptomic characterization of proliferative cells of selectively affected by irradiation.

Front Parasitol

March 2024

Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.

Flatworms depend on stem cells for continued tissue growth and renewal during their life cycles, making these cells valuable drug targets. While neoblasts are extensively characterized in the free-living planarian , and similar stem cells have been characterized in the trematode , their identification and characterization in cestodes is just emerging. Since stem cells are generally affected by irradiation, in this work we used this experimental approach to study the stem cells of the model cestode .

View Article and Find Full Text PDF

Exosomes as promising frontier approaches in future cancer therapy.

World J Gastrointest Oncol

January 2025

Department of Automatic Control Engineering, Feng Chia University, Taichung 407, Taiwan.

In this editorial, we will discuss the article by Tang published in the recent issue of the . They explored an innovative approach to enhancing gemcitabine (GEM) delivery and efficacy using human bone marrow mesenchymal stem cells (HU-BMSCs)-derived exosomes. The manufacture of GEM-loaded HU-BMSCs-derived exosomes (Exo-GEM) has been optimized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!