Fructans play important roles not only as a carbon source for survival under persistent snow cover but also as agents that protect against various stresses in overwintering plants. Complex fructans having both beta-(2,1)- and beta-(2,6)-linked fructosyl units accumulate in wheat (Triticum aestivum L.) during cold hardening. We detected fructan: fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100) activity for catalyzing the formation and extension of beta-(2,1)-linked fructans in hardened wheat tissues, cloned cDNAs (wft3 and wft4) of 1-FFT, and analyzed the enzymatic properties of a wft3 recombinant protein (Wft3m) produced by yeast. Wft3m transferred beta-(2,1)-linked fructosyl units to phlein, an extension of sucrose through beta-(2,6)-linked fructosyl units, as well as to inulin, an extension of sucrose through beta-(2,1)-linked fructosyl units, but could not efficiently synthesize long inulin oligomers. Incubation of a mixture of Wft3m and another recombinant protein of wheat, sucrose:fructan 6-fructosyltransferase (6-SFT), with sucrose and 1-kestotriose produced fructans similar to those that accumulated in hardened wheat tissues. The results demonstrate that 1-FFT produces branches of beta-(2,1)-linked fructosyl units to phlein and graminan oligomers synthesized by 6-SFT and contributes to accumulation of fructans containing beta-(2,1)- and beta-(2,6)-linked fructosyl units. In combination with sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99) and 6-SFT, 1-FFT is necessary for fructan synthesis in hardened wheat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-005-0054-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!