Central dopamine function is reduced by decreasing the availability of the catecholamine precursor, tyrosine, using a tyrosine-free amino acid mixture containing multiple large neutral as well as branched chain amino-acids, which compete with tyrosine for uptake into the brain. Current mixtures are cumbersome to make and administer, and unpalatable to patients and volunteers. Here, we investigate whether individual or limited amino-acid combinations could reduce brain tyrosine levels and hence dopamine function. Measurements of regional brain tyrosine levels, catecholamine and indoleamine synthesis (L-DOPA and 5-HTP accumulation, respectively) were used to identify an effective paradigm to test in neurochemical, behavioral and fos immunocytochemical models. Administration of leucine or isoleucine, or a mixture of leucine, isoleucine, and valine reduced tyrosine and 5-HTP, but not L-DOPA accumulation. A mixture of leucine, valine, and isoleucine supplemented with tryptophan reduced brain tyrosine and L-DOPA, but not 5-HTP. In microdialysis experiments this amino-acid mixture reduced basal and amphetamine-evoked striatal dopamine release, as well as amphetamine-induced hyperactivity. This mixture also reduced amphetamine-induced fos expression in striatal areas. In conclusion, the present study identified a small combination of amino acids that reduces brain tyrosine and dopamine function in a manner similar to mixtures of multiple amino acids. This minimal mixture may have use as a dopamine reducing paradigm in patient and volunteer studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.npp.1300835 | DOI Listing |
Crit Care
January 2025
Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.
Background: Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Optical resolution photoacoustic imaging of uneven samples without z-scanning is transformative for the fast analysis and diagnosis of diseases. However, current approaches to elongate the depth of field (DOF) typically imply cumbersome postprocessing procedures, bulky optical element ensembles, or substantial excitation beam side lobes. Metasurface technology allows for the phase modulation of light and the miniaturization of imaging systems to wavelength-size thickness.
View Article and Find Full Text PDFActa Neurobiol Exp (Wars)
January 2025
Ondokuz Mayıs University, School of Medicine, Department of Biochemistry, Samsun, Turkey.
Neuroinflammation and the immune response are recognized as significant mechanisms contributing to the progression and pathophysiology of Parkinson's disease (PD). Consequently, extensive research is being conducted on drugs targeting inflammation and immune response. Leflunomide, known for its anti‑inflammatory and immunomodulatory properties, is currently used as a disease‑modifying agent for the treatment of rheumatoid arthritis.
View Article and Find Full Text PDFMed Chem
January 2025
Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco.
Background: Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
January 2025
Department of Biotechnology, National Institute of Technology, Raipur, 492001, India.
Parkinson's disease (PD) is a neurodegenerative disorder that results from the progressive loss of neurons in the brain followed by symptoms such as slowness and rigidity in movement, sleep disorders, dementia and many more. The different mechanisms due to which the neuronal degeneration occurs have been discussed, such as mutation in PD related genes, formation of Lewy bodies, oxidation of dopamine. This review discusses current surgical treatment and gene therapies with novel developments proposed for PD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!