Extended habit training reduces dopamine mediation of appetitive response expression.

J Neurosci

Department of Psychology, Columbia University, New York, New York 10027, USA.

Published: July 2005

A wide range of behaviors is impaired after disruption of dopamine (DA) transmission, yet behaviors that are reflexive, automatic, or elicited by salient cues often remain intact. Responses triggered by strong external cues appear to be DA independent. Here, we examined the possibility that a single behavior may become DA independent as a result of extended training. Rats were trained to execute a head-entry response to a cue signaling food delivery. Vulnerability of the response to D1 or D2 receptor blockade was assessed on day 3, 7, or 17 of 28-trial-per-day training. During the early stages of training, the D1 receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH 23390) increased response latencies; however, the same behavior was unaffected by SCH 23390 in animals tested during the later stages of training. Other aspects of behavior such as locomotion and head-entry responses during the uncued intertrial interval remained vulnerable to SCH 23390 throughout the experiment. This D1-mediated response was unaffected by the D2 antagonist raclopride, even at a dose that strongly suppressed locomotion. The results provide strong evidence that a D1-dependent behavior becomes less dependent on DA with extended training. A number of fundamental neurobiological changes occur as behaviors become learned habits; at least for some responses, this change involves a shift from D1-mediated to D1-independent responding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725359PMC
http://dx.doi.org/10.1523/JNEUROSCI.1498-05.2005DOI Listing

Publication Analysis

Top Keywords

sch 23390
12
extended training
8
stages training
8
training
6
response
5
extended habit
4
habit training
4
training reduces
4
reduces dopamine
4
dopamine mediation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!