Activation of Kupffer cells is a prominent feature of necro-inflammatory liver injury. We have recently demonstrated that 5-lipoxygenase (5-LO) and its accessory protein, 5-LO-activating protein (FLAP), are essential for the survival of Kupffer cells in culture, as their inhibition drives these liver resident macrophages to programmed cell death. In the current study, we explored whether the potent FLAP inhibitor, Bay-X-1005, reduces the number of Kupffer cells in vivo and whether this pharmacological intervention protects the liver from carbon tetrachloride (CCl(4))-induced damage. Rats treated with CCl(4) showed an increased number of Kupffer cells, an effect that was abrogated by the administration of Bay-X-1005 (100 mg/Kg body weight, per oral, daily). Consistent with a role for Kupffer cells in necro-inflammatory liver injury, partial depletion of Kupffer cells following FLAP inhibition was associated with a remarkable hepatoprotective action. Indeed, Bay-X-1005 significantly reduced the intense hepatocyte degeneration and large bridging necrosis induced by CCl(4) treatment. Moreover, Bay-X-1005 induced a reduction in the gelatinolytic activity of matrix metalloproteinase-2 (MMP-2) and a decrease in mRNA expression of tissue inhibitor of MMP-2. The FLAP inhibitor reduced leukotriene (LT)B(4) and cysteinyl LT levels and down-regulated 5-LO and FLAP protein expression in the liver. It is interesting that a significant increase in the hepatic formation of lipoxin A(4), an endogenous, anti-inflammatory lipid mediator involved in the resolution of inflammation, was observed after the administration of Bay-X-1005. These findings support the concept that modulation of the 5-LO pathway by FLAP inhibition may be useful in the prevention of hepatotoxin-induced necro-inflammatory injury.

Download full-text PDF

Source
http://dx.doi.org/10.1189/jlb.1204747DOI Listing

Publication Analysis

Top Keywords

kupffer cells
28
liver injury
12
role kupffer
8
necro-inflammatory liver
8
flap inhibitor
8
number kupffer
8
administration bay-x-1005
8
flap inhibition
8
kupffer
7
cells
7

Similar Publications

Most gene therapies exert their actions via manipulation of hepatocytes (parenchymal cells) and the reasons behind the suboptimal performance of synthetic mRNA in non-parenchymal cells (NPC) such as Kupffer cells (KC), and liver macrophages, remain unclear. Here, the spatio-temporal distribution of mRNA encoding enhanced green fluorescent protein (Egfp), siRNA, or both co-encapsulated into lipid nanoparticles (LNP) in the liver in vivo using real-time intravital imaging is investigated. Although both KC and hepatocytes demonstrate comparable high and rapid uptake of mRNA-LNP and siRNA-LNP in vivo, the translation of Egfp mRNA occurs exclusively in hepatocytes during intravital imaging.

View Article and Find Full Text PDF

The C3/C3aR pathway exacerbates acetaminophen-induced mouse liver injury via upregulating podoplanin on the macrophage.

FASEB J

January 2025

Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.

Acute liver failure (ALF) is a life-threatening condition that occurs when the liver sustains severe damage and rapidly loses its function. The primary cause of ALF is the overdose of acetaminophen (APAP), and its treatment is relatively limited. The involvement of the complement system in the development of ALF has been implicated.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as nonalcoholic steatohepatitis (MASH), is a major risk factor for cirrhosis and hepatocellular carcinoma (HCC) and a leading cause of liver transplantation. MASH is caused by an accumulation of toxic fat molecules in the hepatocyte which leads to inflammation and fibrosis. Inadequate human "MASH in a dish" models have limited our advances in understanding MASH pathogenesis and in drug discovery.

View Article and Find Full Text PDF

The cellular characteristics of the opportunistic fungal pathogen Cryptococcus species were investigated in the infected liver of an immunocompetent host using transmission electron microscopy (TEM). With no records of immunodeficiency, the 3-year-old female patient displayed a high-grade fever, lethargy, and increasing jaundice. TEM analysis revealed the presence of round yeast cells in the patient's liver.

View Article and Find Full Text PDF

Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!