Microsatellite, minisatellite and mating type markers were used to determine the genetic structure of the fungus Leptosphaeria maculans within a disease nursery, where Brassica napus lines were screened for resistance to blackleg disease under high inoculum pressure. Fungal isolates were collected from pseudothecia in infected stubble and pycnidia within cotyledon lesions on seedlings within the nursery. Genetic diversity was high with gene diversity at H=0.700 across four polymorphic loci, and genotypic diversity at D=0.993. Among the 159 isolates analysed, 102 multilocus genotypes were identified. The even distribution of mating type idiomorphs MAT1-1 and MAT1-2 and gametic equilibrium within the population provided further evidence of random mating. Genetic diversity was distributed on a very fine scale in the disease nursery. The majority of genetic diversity (67%) was distributed among conidia within a lesion or among ascospores from a piece of stubble, while the remainder (33%) was distributed within lesions on seedlings or different stubble pieces. There were no among-group differences between samples from stubble and seedlings. This is consistent with the low level of genetic differentiation between the ascospore and conidia samples (F (ST)=0.017) indicating that all isolates of L. maculans from the disease nursery most likely belong to one population, and that ascospores form the primary inoculum in the disease nursery.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00294-005-0006-5DOI Listing

Publication Analysis

Top Keywords

disease nursery
20
maculans disease
12
genetic diversity
12
genetic structure
8
fungus leptosphaeria
8
leptosphaeria maculans
8
nursery brassica
8
brassica napus
8
mating type
8
lesions seedlings
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!