Populations of feral house mice (Mus domesticus L.) in Australia undergo multiannual fluctuations in density, and these outbreaks may be partly driven by some change in behavioural self-regulation. In other vertebrate populations with multiannual fluctuations, changes in kin structure have been proposed as a causal mechanism for changes in spacing behaviour, which consequently result in density fluctuations. We tested the predictions of two alternative conceptual models based on kin selection in a population of house mice during such an outbreak. Both published models (Charnov & Finerty 1980; Lambin & Krebs 1991) propose that the level of relatedness between interacting individuals affects their behavioural response and that this changes with population density, though the nature of this relationship differs between the two models. Neither of the models was consistent with all observed changes in relatedness between interacting female mice; however, our results suggested that changes in kin structure still have potential for explaining why mouse outbreaks begin. Therefore, we have developed a variant of one of these conceptual models suggesting that the maintenance of female kin groups through the preceding winter significantly improves recruitment during the subsequent breeding season, and is therefore necessary for mouse outbreaks. We provide six testable predictions to falsify this hypothesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-294X.2005.02623.x | DOI Listing |
Cell Death Differ
December 2024
Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., USA.
Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.
View Article and Find Full Text PDFAnal Bioanal Chem
December 2024
College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China.
The abnormal expression of acetylcholinesterase (AChE) is linked to the development of various diseases. Accurate determination of AChE activity as well as screening AChE inhibitors (AChEIs) holds paramount importance for early diagnosis and treatment of AChE-related diseases. Herein, a fluorescent and colorimetric dual-channel probe based on gold nanoclusters (AuNCs) and manganese dioxide nanosheets (MnO NSs) was developed.
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
Influenza virus infections are a serious danger to people's health worldwide as they are responsible for seasonal flu outbreaks. There is an urgent need to improve the effectiveness and durability longevity of the immune response to influenza vaccines. We synthesized the CpG HP021 and examined the impact of it on the immune response to an influenza vaccine.
View Article and Find Full Text PDFSci Rep
December 2024
Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, Jiangsu, China.
Yu-Ping-Feng-San (YPF) is a famous classical Chinese medicine formula known for its ability to boost immunity. YPF has been applied to enhance the immune status of tumor patients in clinical practice. However, there is still a lack of research on its immune regulatory effects and mechanisms in the tumor microenvironment.
View Article and Find Full Text PDFSci Rep
December 2024
School of Basic Medicine, Dali University, Dali, 671003, Yunnan, China.
Resolvin D1 (RvD1) is an endogenous anti-inflammatory mediator that modulates the inflammatory response and promotes inflammation resolution. RvD1 has demonstrated neuroprotective effects in various central nervous system contexts; however, its role in the pathophysiological processes of intracerebral hemorrhage (ICH) and the potential protective mechanisms when combined with exercise rehabilitation remain unclear. A mouse model of ICH was established using collagenase, and treatment with RvD1 combined with three weeks of exercise rehabilitation significantly improved neurological deficits, muscle strength, learning, and memory in ICH mice while reducing anxiety-like behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!