Various chronic neurological diseases are associated with increased expression of transforming growth factor-beta1 (TGF-beta1) in the brain. TGF-beta1 has both neuroprotective and neurodegenerative functions, depending on conditions such as duration and the local and temporal pattern of its expression. Previous transgenic approaches did not enable control for these dynamic aspects. To overcome these limitations, we established a transgenic mouse model with inducible neuron-specific expression of TGF-beta1 based on the tetracycline-regulated gene expression system. TGF-beta1 expression was restricted to the brain where it was particularly pronounced in the neocortex, hippocampus and striatum. Transgene expression was highly sensitive to the presence of doxycycline and completely silenced within 6 days after doxycycline application. After long-term expression, perivascular thioflavin-positive depositions, formed by amyloid fibrils, developed. These depositions persisted even after prolonged silencing of the transgene, indicating an irreversible process. Similarly, strong perivascular apolipoprotein E (ApoE) depositions were found after TGF-beta1 expression and these remained despite TGF-beta1 removal. These in vivo observations suggests that the continuous presence of TGF-beta1 as initial trigger is not necessary for the persistence and development of chronic lesions. Neuroprotective effects were observed after short-term expression of TGF-beta1. Death of striatal neurons induced by 3-nitropropionic acid was markedly reduced after induced TGF-beta1 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2005.04189.xDOI Listing

Publication Analysis

Top Keywords

tgf-beta1 expression
12
expression
11
tgf-beta1
10
expression tgf-beta1
8
inducible neuronal
4
neuronal expression
4
expression transgenic
4
transgenic tgf-beta1
4
tgf-beta1 vivo
4
vivo dissection
4

Similar Publications

Purpose: Rose Bengal Photodynamic Therapy (RB-PDT) offers dual therapeutic benefits by enhancing corneal stiffness and providing antibacterial activity, presenting significant potential for patients with keratoconus complicated by keratitis. Our purpose was to assess the effect of rose bengal photodynamic therapy (RB-PDT) on the expression of pro-inflammatory cytokines and chemokines, as well as on extracellular matrix (ECM)-related molecules, in lipopolysaccharide (LPS)-induced inflammation of keratoconus human corneal fibroblasts (KC-HCFs). Additionally, the involvement of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways which are downstream of the Toll-like receptor 4 (TLR4) pathway were examined.

View Article and Find Full Text PDF

METTL3, a key enzyme in N6-methyladenosine (m6A) modification, plays a crucial role in the progression of renal fibrosis, particularly in chronic active renal allograft rejection (CAR). This study explored the mechanisms by which METTL3 promotes renal allograft fibrosis, focusing on its role in the macrophage-to-myofibroblast transition (MMT). Using a comprehensive experimental approach, including TGF-β1-induced MMT cell models, METTL3 conditional knockout (METTL3 KO) mice, and renal biopsy samples from patients with CAR, the study investigates the involvement of METTL3/Smad3 axis in driving MMT and renal fibrosis during the episodes of CAR.

View Article and Find Full Text PDF

The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.

View Article and Find Full Text PDF

SMYD3 plays a pivotal role in mediating the epithelial-mesenchymal transition process in breast cancer.

Biochem Biophys Res Commun

January 2025

Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China. Electronic address:

In previous reports, we highlighted the significant involvement of SMYD3, a histone methyltransferase (HMT), in various aspects of cancer progression, including cell adhesion, migration, and invasion. In this study, we delved deeper into understanding the relationship between SMYD3 and epithelial-mesenchymal transition (EMT) both in cell lines and clinical samples. Our investigation uncovered a notable correlation between heightened SMYD3 expression and the presence of EMT markers in human breast cancer tissues.

View Article and Find Full Text PDF

Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!